For many years, psychiatrists have tried to understand factors involved in response to medications or psychotherapies, in order to personalize their treatment choices. There is now a broad and growing interest in the idea that we can develop models to personalize treatment decisions using new statistical approaches from the field of machine learning and applying them to larger volumes of data. In this pursuit, there has been a paradigm shift away from experimental studies to confirm or refute specific hypotheses towards a focus on the overall explanatory power of a predictive model when tested on new, unseen datasets. In this paper, we review key studies using machine learning to predict treatment outcomes in psychiatry, ranging from medications and psychotherapies to digital interventions and neurobiological treatments. Next, we focus on some new sources of data that are being used for the development of predictive models based on machine learning, such as electronic health records, smartphone and social media data, and on the potential utility of data from genetics, electrophysiology, neuroimaging and cognitive testing. Finally, we discuss how far the field has come towards implementing prediction tools in real-world clinical practice. Relatively few retrospective studies to-date include appropriate external validation procedures, and there are even fewer prospective studies testing the clinical feasibility and effectiveness of predictive models. Applications of machine learning in psychiatry face some of the same ethical challenges posed by these techniques in other areas of medicine or computer science, which we discuss here. In short, machine learning is a nascent but important approach to improve the effectiveness of mental health care, and several prospective clinical studies suggest that it may be working already.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129866PMC
http://dx.doi.org/10.1002/wps.20882DOI Listing

Publication Analysis

Top Keywords

machine learning
24
treatment outcomes
8
outcomes psychiatry
8
medications psychotherapies
8
personalize treatment
8
predictive models
8
learning
6
machine
5
studies
5
promise machine
4

Similar Publications

Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).

Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.

View Article and Find Full Text PDF

Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.

View Article and Find Full Text PDF

The combination of physiology and machine learning for prediction of CPAP pressure and residual AHI in OSA.

J Clin Sleep Med

January 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, San Diego, CA.

Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnea (OSA); however some people have residual respiratory events or require significantly higher CPAP pressure while on therapy. Our objective was to develop predictive models for CPAP outcomes and assess whether the inclusion of physiological traits enhances prediction. We constructed predictive models from baseline information for subsequent residual apnea-hypopnea index (AHI) and optimal CPAP pressure.

View Article and Find Full Text PDF

Active learning of molecular data for task-specific objectives.

J Chem Phys

January 2025

Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland.

Active learning (AL) has shown promise to be a particularly data-efficient machine learning approach. Yet, its performance depends on the application, and it is not clear when AL practitioners can expect computational savings. Here, we carry out a systematic AL performance assessment for three diverse molecular datasets and two common scientific tasks: compiling compact, informative datasets and targeted molecular searches.

View Article and Find Full Text PDF

Unlabelled: Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!