Purpose: A three-dimensional (3D) structure extraction technique viewed from a two-dimensional image is essential for the development of a computer-aided diagnosis (CAD) system for colonoscopy. However, a straightforward application of existing depth-estimation methods to colonoscopic images is impossible or inappropriate due to several limitations of colonoscopes. In particular, the absence of ground-truth depth for colonoscopic images hinders the application of supervised machine learning methods. To circumvent these difficulties, we developed an unsupervised and accurate depth-estimation method.

Method: We propose a novel unsupervised depth-estimation method by introducing a Lambertian-reflection model as an auxiliary task to domain translation between real and virtual colonoscopic images. This auxiliary task contributes to accurate depth estimation by maintaining the Lambertian-reflection assumption. In our experiments, we qualitatively evaluate the proposed method by comparing it with state-of-the-art unsupervised methods. Furthermore, we present two quantitative evaluations of the proposed method using a measuring device, as well as a new 3D reconstruction technique and measured polyp sizes.

Results: Our proposed method achieved accurate depth estimation with an average estimation error of less than 1 mm for regions close to the colonoscope in both of two types of quantitative evaluations. Qualitative evaluation showed that the introduced auxiliary task reduces the effects of specular reflections and colon wall textures on depth estimation and our proposed method achieved smooth depth estimation without noise, thus validating the proposed method.

Conclusions: We developed an accurate depth-estimation method with a new type of unsupervised domain translation with the auxiliary task. This method is useful for analysis of colonoscopic images and for the development of a CAD system since it can extract accurate 3D information.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-021-02398-xDOI Listing

Publication Analysis

Top Keywords

depth estimation
20
auxiliary task
20
colonoscopic images
16
proposed method
16
cad system
8
accurate depth-estimation
8
depth-estimation method
8
domain translation
8
accurate depth
8
quantitative evaluations
8

Similar Publications

Psychiatric disorders are highly comorbid, heritable, and genetically correlated [1-4]. The primary objective of cross-disorder psychiatric genetics research is to identify and characterize both the shared genetic factors that contribute to convergent disease etiologies and the unique genetic factors that distinguish between disorders [4, 5]. This information can illuminate the biological mechanisms underlying comorbid presentations of psychopathology, improve nosology and prediction of illness risk and trajectories, and aid the development of more effective and targeted interventions.

View Article and Find Full Text PDF

This study presents a novel framework for advancing sustainable urban logistics and distribution systems, with a pivotal focus on fast charging and power exchange modalities as the cornerstone of our research endeavors. Our central contribution encompasses the formulation of an innovative electric vehicle path optimization model, whose paramount objective is to minimize overall operational costs. Integrating V2G technology, we facilitate sophisticated slow charging and discharging management of EVs upon their return to distribution centers, enhancing resource utilization.

View Article and Find Full Text PDF

Towards a better knowledge of U(VI) speciation in weakly alkaline solution through an in-depth study of U(VI) intrinsic colloids.

Chemosphere

December 2024

Institut de Chimie Séparative de Marcoule, CEA, UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze, France. Electronic address:

The formation of U(VI) intrinsic colloids has a non-negligible impact on the dissemination of actinides in the environment. It is therefore essential to better identify their nature, formation conditions, and stability domains. These specific points are especially important since the behavior of these elements in environment is generally estimated by geochemical transport modeling.

View Article and Find Full Text PDF

This study introduced a novel approach to 3D image segmentation utilizing a neural network framework applied to 2D depth map imagery, with Z axis values visualized through color gradation. This research involved comprehensive data collection from mechanically harvested wild blueberries to populate 3D and red-green-blue (RGB) images of filled totes through time-of-flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and Detectron2 frameworks were assessed for their segmentation capabilities.

View Article and Find Full Text PDF

Accurate estimation of landslide depth is essential for practical hazard assessment and risk mitigation. This work addresses the problem of determining landslide depth from satellite-derived elevation data. Using the principle of mass conservation, this problem can be formulated as a linear inverse problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!