Enhanced phosphorus removal of constructed wetland through plant growth-promoting rhizobacteria (PGPR) addition.

Environ Sci Pollut Res Int

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.

Published: October 2021

Phosphorus (P) removal efficiency of constructed wetland (CW) was limited due to the adsorption saturation on substrate surface along with continuous operation of CW. This study attempted to improve the P removal of CW through introduction of plant growth-promoting rhizobacteria (PGPR). Compared with the control-CW (C-CW), the results of CW with bio-augmentation (B-CW) showed that the total phosphorus (TP) removal efficiency was increased by 36.7% due to the enhanced plant uptake of P. The physiology indicators (height and root activity) of plants in B-CW were significantly improved, and the average P content of plants in B-CW was 0.78 g/kg, which was 85.7% higher than that of C-CW (0.42 g/kg). This was because PGPR addition optimized the P forms adsorbed on substrate surface and increased the proportion of Ca/Mg-P which was bioavailable for plant growth, and then subsequently enhanced plant uptake of P. Through bio-augmentation, the proportion of P removal by plant uptake in B-CW (25.2%) was increased by 2.5 times compared with that of C-CW (7.1%). The outcomes of this study would shed light on intensifying the role of plant uptake in P removal of CWs through bio-augmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14364-wDOI Listing

Publication Analysis

Top Keywords

plant uptake
16
phosphorus removal
12
constructed wetland
8
plant growth-promoting
8
growth-promoting rhizobacteria
8
rhizobacteria pgpr
8
pgpr addition
8
removal efficiency
8
substrate surface
8
enhanced plant
8

Similar Publications

Removal of antibiotics and their impact on growth, nutrient uptake, and biomass productivity in semi-continuous cultivation of Auxenochlorella protothecoides.

J Environ Manage

January 2025

Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.

The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!