The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esab015 | DOI Listing |
Following a request from the European Commission, the European Food Safety Authority was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of canthaxanthin, regarding the addition of a new production route, by the yeast CBS 146148. The additive is already authorised as sensory feed additive for use in feed for chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying, ornamental fish, ornamental birds and ornamental breeder hens. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concludes that canthaxanthin produced with CBS 146148 is considered safe for the target species, the consumer and the environment under the current authorised conditions of use.
View Article and Find Full Text PDFBiol Lett
January 2025
Manaaki Whenua-Landcare Research, Lincoln, Canterbury 7640, New Zealand.
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM.
View Article and Find Full Text PDFGigascience
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
Purpose: Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model.
Methods: Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light.
Animals (Basel)
December 2024
Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium.
This study evaluated the feed digestibility of diets including autotrophic in 252 male broilers (Ross 308), comparing unprocessed biomass (trial 1) and pulsed electric field (PEF) processed biomass (trial 2) at inclusion levels up to 20%. In trial 2, performance and meat color were also evaluated. Each trial included seven treatments (0%, 1%, 2%, 5%, 10%, 15%, and 20% (%/ on dry matter (DM)) ) with six replicates (three birds per replicate) per treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!