The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for 'impactful' research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework's performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41587-021-00907-6 | DOI Listing |
JMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, 37099, Germany.
Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.
View Article and Find Full Text PDFMed Phys
January 2025
School of Computer Science and Engineering, Beihang University, Beijing, China.
Background: Computed tomography angiography (CTA) is used to screen for coronary artery calcification. As the coronary artery has complicated structure and tiny lumen, manual screening is a time-consuming task. Recently, many deep learning methods have been proposed for the segmentation (SEG) of coronary artery and calcification, however, they often neglect leveraging related anatomical prior knowledge, resulting in low accuracy and instability.
View Article and Find Full Text PDFJ Interprof Care
January 2025
University of South Australia Allied Health and Human Performance, South Australia, Australia.
Allied health clinical educators (AHCEs) are vital to health professional student education and clinical education is often expected in a job role. Communities of practice (CoPs) may be a strategy to meet educator learning needs. A rapid review was conducted to determine the structures, purposes, and outcomes of AHCE CoPs, and barriers or enablers of participation in CoPs.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.
In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques provide an alternative, automated means that can support experimentalists in mechanism assignment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!