AI Article Synopsis

  • - Prostate cancer (PCa) is a common and slow-growing cancer in men, but many low-risk patients face unnecessary diagnoses and treatments that can negatively impact their quality of life.
  • - There is a critical need for better understanding of PCa through clinically relevant biomarkers, as traditional treatments may not effectively differentiate between hormone-sensitive and resistant forms of the disease.
  • - This study identifies novel biomarkers (like ADIRF and SLC2A5) by analyzing genetic similarities across different cancers (prostate, breast, ovarian), revealing that these markers can predict disease status more accurately than randomly chosen gene subsets.

Article Abstract

Prostate cancer (PCa), the second leading cause of cancer death in American men, is a relatively slow-growing malignancy with multiple early treatment options. Yet, a significant number of low-risk PCa patients are over-diagnosed and over-treated with significant and long-term quality of life effects. Further, there is ever increasing evidence of metastasis and higher mortality when hormone-sensitive or castration-resistant PCa tumors are treated indistinctively. Hence, the critical need is to discover clinically-relevant and actionable PCa biomarkers by better understanding the biology of PCa. In this paper, we have discovered novel biomarkers of PCa tumors through cross-cancer learning by leveraging the pathological and molecular similarities in the DNA repair pathways of ovarian, prostate, and breast cancer tumors. Cross-cancer disease learning enriches the study population and identifies genetic/phenotypic commonalities that are important across diseases with pathological and molecular similarities. Our results show that ADIRF, SLC2A5, C3orf86, HSPA1B are among the most significant PCa biomarkers, while MTRNR2L1, EEPD1, TEPP and VN1R2 are jointly important biomarkers across prostate, breast and ovarian cancers. Our validation results have further shown that the discovered biomarkers can predict the disease state better than any randomly selected subset of differentially expressed prostate cancer genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128891PMC
http://dx.doi.org/10.1038/s41598-021-89789-xDOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
pca tumors
8
pca biomarkers
8
tumors cross-cancer
8
pathological molecular
8
molecular similarities
8
prostate breast
8
pca
7
cancer
6
biomarkers
6

Similar Publications

The purpose of this systematic review was to evaluate the role of PSMA PET/CT in intermediate-risk prostate cancer (PCa) patients, to determine whether it could help improve treatment strategy and prognostic stratification. A systematic literature search up to May 2024 was conducted in the PubMed, Embase and Scopus databases. Articles with mixed risk patient populations, review articles, editorials, letters, comments, or case reports were excluded.

View Article and Find Full Text PDF

Purpose: Assessing surgical skills is vital for training surgeons, but creating objective, automated evaluation systems is challenging, especially in robotic surgery. Surgical procedures generally involve dissection and exposure (D/E), and their duration and proportion can be used for skill assessment. This study aimed to develop an AI model to acquire D/E parameters in robot-assisted radical prostatectomy (RARP) and verify if these parameters could distinguish between novice and expert surgeons.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of utilizing artificial intelligence (AI)-predicted biparametric MRI (bpMRI) image features for predicting the aggressiveness of prostate cancer (PCa).

Materials And Methods: A total of 878 PCa patients from 4 hospitals were retrospectively collected, all of whom had pathological results after radical prostatectomy (RP). A pre-trained AI algorithm was used to select suspected PCa lesions and extract lesion features for model development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!