Rapid Arctic warming has intensified northern wildfires and is thawing carbon-rich permafrost. Carbon emissions from permafrost thaw and Arctic wildfires, which are not fully accounted for in global emissions budgets, will greatly reduce the amount of greenhouse gases that humans can emit to remain below 1.5 °C or 2 °C. The Paris Agreement provides ongoing opportunities to increase ambition to reduce society's greenhouse gas emissions, which will also reduce emissions from thawing permafrost. In December 2020, more than 70 countries announced more ambitious nationally determined contributions as part of their Paris Agreement commitments; however, the carbon budgets that informed these commitments were incomplete, as they do not fully account for Arctic feedbacks. There is an urgent need to incorporate the latest science on carbon emissions from permafrost thaw and northern wildfires into international consideration of how much more aggressively societal emissions must be reduced to address the global climate crisis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166174 | PMC |
http://dx.doi.org/10.1073/pnas.2100163118 | DOI Listing |
Sci Total Environ
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada. Electronic address:
Permafrost predominates in polar and high mountain regions, encompassing nearly 15 % of the exposed land in the Northern Hemisphere. It denotes soil or rock that remains at or below 0 °C for the duration of at least two consecutive years. These frozen soils serve as a barrier to contaminants that are stored and accumulated in permafrost over extended periods of time.
View Article and Find Full Text PDFWater Res
December 2024
Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
Terrestrial organic matter from surrounding primary vegetation is critical for carbon cycling in thermokarst lakes. However, the characteristics and contribution of this vegetation in shaping microbial community and affecting carbon emissions in thermokarst lakes remain poorly understood. This study quantifies the influence of lakeshore primary vegetation characteristics on microbial community and carbon emissions across lakes with different vegetation types on the Qinghai-Tibet Plateau (QTP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research, Permafrost Section, Potsdam 14401, Germany.
Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play-for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines-have received less attention, preventing assessments of these processes' impacts compared to and combined with coastal erosion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
Climate warming can alleviate temperature and nutrient constraints on tree growth in boreal regions, potentially enhancing boreal productivity. However, in permafrost environments, warming also disrupts the physical foundation on which trees grow, leading to leaning trees or "drunken" forests. Tree leaning might reduce radial growth, undermining potential benefits of warming.
View Article and Find Full Text PDFJ Environ Manage
November 2024
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:
Due to the impact of climate change, significant alterations in snowmelt have already occurred, which have been demonstrated to play a crucial role in photosynthetic carbon sequestration processes in vegetation. However, the effect of changes in snowmelt on light use efficiency (LUE) of grassland remain largely unknown in the permafrost region of Qinghai-Tibetan Plateau (QTP). By utilizing remote sensing data from 2000 to 2017, we conducted an analysis on the spatial and temporal patterns of LUE for various types of permafrost and grassland on the QTP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!