An innate 24 h circadian clock drives various behavioral processes via expression of clock genes that regulate circadian rhythmicity and temporal signals. Elucidating the gene expression in goats may contribute to improving the knowledge of the regulation of circadian rhythms in this species. Five nonpregnant and nonlactating Maltese goats with no evidence of disease were kept in an indoor pen under the natural long photoperiod (05:05-20:56 h) and natural environmental temperature (23°C and 60% RH). They were fed an Alfalfa hay and concentrate mixture provided twice a day; water was available ad libitum. Blood samples were collected every 4 h over a 48 h period into PAX gene Blood RNA Tubes and stored at -80°C until processing. Clock genes () were determined using real-time quantitative polymerase chain reaction. During the experimental period, locomotor activity was monitored by an actigraphy-based data logger that records a digitally integrated measure of motor activity as a means to assess indices of discomfort during study and stability of the circadian rhythm. All of the tested genes showed daily rhythmicity in their expression in whole blood. Differences in their circadian parameters were observed. Mesor and amplitude were statistically different among the tested gene (Mesor: F = 205.30; < .0001; amplitude: F = 104.80; < .0001), with each gene showing its acrophase at a different time of day (F = 81.17; < .0001), and differences were observed between the two days of monitoring (F = 10.25; = .003). The application of two-way analysis of variance (ANOVA) on robustness of rhythm values did not show statistical differences among the tested genes (F = 1.83; = .14) and between the two days of monitoring (F = 1.16; = .28). Locomotor activity data recording were in accordance with the data reported in literature, indicating the absence of discomfort or alteration of circadian rhythms during the experimental period. Our results support the presence of a cyclic transcription of clock genes in whole blood of healthy goats housed under a long light natural photoperiod and natural environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07420528.2021.1928158 | DOI Listing |
Chronobiol Int
January 2025
Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan.
The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility.
View Article and Find Full Text PDFNat Commun
January 2025
European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
Numerous cellular and molecular processes during embryonic development prompt the fundamental question of how their tempos are coordinated and whether a common global modulator exists. While the segmentation clock tempo scales with the kinetics of gene expression and degradation processes of the core clock gene Hes7 across mammals, the coordination of these processes remains unclear. This study examines whether metabolic activities serve as a global modulator for the segmentation clock, finding them to be selective instead.
View Article and Find Full Text PDFBiofactors
January 2025
Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain.
Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!