Diversity-oriented synthesis through gamma radiolysis: Preparation of unusual ecdysteroid derivatives activating Akt and AMPK in skeletal muscle cells.

Bioorg Chem

Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, 6726 Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, 6720 Szeged, Hungary. Electronic address:

Published: July 2021

Gamma-ray radiation is a unique way to induce chemical transformations of bioactive compounds. In the present study, we pursued this approach to the diversity-oriented synthesis of analogs of 20-hydroxyecdysone (20E), an abundant ecdysteroid with a range of beneficial, non-hormonal bioactivities in mammals including humans. Gamma irradiations of aqueous solutions of 20E were conducted either in N- or NO-saturated solutions. Centrifugal partition chromatography was used to fractionate crude resulting irradiated materials using a biphasic solvent system composed of tert-butyl alcohol - ethyl acetate - water (0.45:0.9:1, v/v/v) in ascending mode. Subsequently, the products were purified by RP-HPLC. Fourteen ecdysteroids, including five new compounds, were isolated, and their structure were elucidated by 1D and 2D NMR and HRMS. Compounds 2-4, 7, 9, 12 and 15 were tested for their capacity to increase the Akt- and AMPK-phosphorylation of C2C12 murine skeletal myotubes in vitro. The compounds were similarly active on Akt as their parent compound. Stachysterone B (7) and a new ring-rearranged compound (12) were more potent than 20E in activating AMPK, indicating a stronger cytoprotective effect. Our results demonstrate the use of gamma irradiation in expanding the chemical diversity of ecdysteroids to obtain new, unusual bioactive metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.104951DOI Listing

Publication Analysis

Top Keywords

diversity-oriented synthesis
8
synthesis gamma
4
gamma radiolysis
4
radiolysis preparation
4
preparation unusual
4
unusual ecdysteroid
4
ecdysteroid derivatives
4
derivatives activating
4
activating akt
4
akt ampk
4

Similar Publications

We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.

View Article and Find Full Text PDF

Azine Dearomatization in Natural Product Total Synthesis.

Chemistry

January 2025

Florida State University, Chemistry and Biochemistry, 95 Chieftan Way, 32306, Tallahassee, UNITED STATES OF AMERICA.

Since antiquity, alkaloid natural products have served as medicinal ingredients that still contribute as an inspiration for the development of novel therapeutics. For the synthetic chemist, much of the importance of natural products lies in their acting as a forcing-function for the invention of new synthetic strategies and tactics for molecular assembly. With this rich history in mind, it remains an important goal for chemists to build nitrogenous structures with greater efficiency, abiding by economies of synthesis.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge.

View Article and Find Full Text PDF

Sugar Auxiliary Group Assisted Diversity-Oriented Enzymatic Modular Synthesis of 0-Series Ganglioside Glycans.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.

Owing to the inaccessibility of β1-4-N-acetylgalactosaminyltransferase for direct glycan chain elongation, the enzymatic synthesis of 0-series gangliosides with extended backbones has not been explored. In this study, sialic acid was enzymatically introduced as an auxiliary group to overcome the limitation of substrate specificity of Campylobacter jejuni β1-4-N-acetylgalactosaminyltransferase (CjCgtA) to achieve the synthesis of desired extended 0-series ganglioside core structures, and the sialic acid auxiliary group could be removed by sialidase at appropriate stages. A bacterial α2-6-sialyltransferase from Photobacterium damselae (Pd2,6ST) exhibited unexpected acceptor substrate specificity for 0-series ganglioside core structures, providing ready access to complex gangliosides bearing the sialyl N-acetylgalactosamine unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!