A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network models and the interpretation of prolonged infection plateaus in the COVID19 pandemic. | LitMetric

Network models and the interpretation of prolonged infection plateaus in the COVID19 pandemic.

Epidemics

Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Science, University of California Irvine, Irvine, CA, 92697, United States. Electronic address:

Published: June 2021

Non-pharmaceutical intervention measures, such as social distancing, have so far been the only means to slow the spread of SARS-CoV-2. In the United States, strict social distancing during the first wave of virus spread has resulted in different types of infection dynamics. In some states, such as New York, extensive infection spread was followed by a pronounced decline of infection levels. In other states, such as California, less infection spread occurred before strict social distancing, and a different pattern was observed. Instead of a pronounced infection decline, a long-lasting plateau is evident, characterized by similar daily new infection levels. Here we show that network models, in which individuals and their social contacts are explicitly tracked, can reproduce the plateau if network connections are cut due to social distancing measures. The reason is that in networks characterized by a 2D spatial structure, infection tends to spread quadratically with time, but as edges are randomly removed, the infection spreads along nearly one-dimensional infection "corridors", resulting in plateau dynamics. Further, we show that plateau dynamics are observed only if interventions start sufficiently early; late intervention leads to a "peak and decay" pattern. Interestingly, the plateau dynamics are predicted to eventually transition into an infection decline phase without any further increase in social distancing measures. Additionally, the models suggest that a second wave becomes significantly less pronounced if social distancing is only relaxed once the dynamics have transitioned to the decline phase. The network models analyzed here allow us to interpret and reconcile different infection dynamics during social distancing observed in various US states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105306PMC
http://dx.doi.org/10.1016/j.epidem.2021.100463DOI Listing

Publication Analysis

Top Keywords

social distancing
28
network models
12
infection
12
infection spread
12
plateau dynamics
12
social
8
strict social
8
infection dynamics
8
infection levels
8
infection decline
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!