Effects of the toxic dinoflagellates Prorocentrum lima and Ostreopsis cf. ovata on immune responses of cultured oysters Crassostrea gasar.

Aquat Toxicol

Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil. Electronic address:

Published: July 2021

AI Article Synopsis

  • Oyster production in Brazil is vital for the economy but is negatively affected by environmental quality, which suffers due to human activities and climate change.
  • A study focused on the impact of two harmful dinoflagellates, Prorocentrum lima and Ostreopsis cf. ovata, on the native oyster species Crassostrea gasar showed various effects on their physiology and defense.
  • Findings revealed that O. cf. ovata significantly impaired hemocyte functions and increased susceptibility to infections in C. gasar, while P. lima did not have a considerable impact, highlighting the potential dangers of harmful algal blooms.

Article Abstract

Oyster production in Brazil has been highlighted as an important economic activity and is directly impacted by the quality of the environment, which is largely the result of human interference and climate change. Harmful algal blooms occur in aquatic ecosystems worldwide, including coastal marine environments which have been increasing over the last decades as a result of global change and anthropogenic activities. In this study, the native oysters Crassostrea gasar from Northeast of Brazil were exposed to two toxic benthic dinoflagellate species, Prorocentrum lima and Ostreopsis cf. ovata. Their respective effects on C. gasar physiology and defense mechanisms were investigated. Oyster hemocytes were first exposed in vitro to different concentrations of both dinoflagellate species to assess their effects on hemocyte functions, such as phagocytosis, production of reactive oxygen species, as well as mortality. Results highlighted an alteration of hemocyte phagocytosis and viability in presence of O. cf. ovata, whereas P. lima did not affect the measured hemocyte functions. In a second experiment, oysters were exposed for 4 days in vivo to toxic culture of O. cf. ovata to assess its effects on hemocyte parameters, tissues damages and pathogenic Perkinsus spp. infection. An increase in hemocyte mortality was also observed in vivo, associated with a decrease of ROS production. Histopathological analyses demonstrated a thinning of the epithelium of the digestive tubules of the digestive gland, inflammatory reaction and a significant increase in the level of infection by Perkinsus spp. in oysters exposed to O. cf. ovata. These results indicate that oysters C. gasar seem to be pretty resilient to an exposure to P. lima and may be more susceptible to O. cf. ovata. Furthermore, the latter clearly impaired oyster physiology and defense mechanisms, thus highlighting that harmful algal blooms of O. cf. ovata could potentially lead to increased susceptibility of C. gasar oysters to parasite infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105846DOI Listing

Publication Analysis

Top Keywords

prorocentrum lima
8
lima ostreopsis
8
ostreopsis ovata
8
oysters crassostrea
8
crassostrea gasar
8
harmful algal
8
algal blooms
8
dinoflagellate species
8
physiology defense
8
defense mechanisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!