We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a comprehensive meta-analysis microarray expression set (meta-expression set). Measurements had to be obtained via microarray-technique from whole blood samples of adult or pediatric patients with sepsis diagnosed based on international consensus definition immediately after admission to the intensive care unit. We aggregate trauma patients, systemic inflammatory response syndrome (SIRS) patients, and healthy controls in a non-septic entity. Differential expression (DE) analysis is compared with machine-learning-based solutions like decision tree (DT), random forest (RF), support vector machine (SVM), and deep-learning neural networks (DNNs). We evaluated classifier training and discrimination performance in 100 independent iterations. To test diagnostic resilience, we gradually degraded expression data in multiple levels. Clustering of expression values based on DE genes results in partial identification of sepsis samples. In contrast, RF, SVM, and DNN provide excellent diagnostic performance measured in terms of accuracy and area under the curve (>0.96 and >0.99, respectively). We prove DNNs as the most resilient methodology, virtually unaffected by targeted removal of DE genes. By surpassing most other published solutions, the presented approach substantially augments current diagnostic capability in intensive care medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128240PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251800PLOS

Publication Analysis

Top Keywords

gene expression
12
expression data
12
sepsis microarray
8
microarray gene
8
intensive care
8
expression
7
comparison machine-learning
4
machine-learning methodologies
4
methodologies accurate
4
accurate diagnosis
4

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!