We propose here an evolutionary interpretation of the presence of highly hypnotizable persons (highs) among the general population. Current experimental evidence suggests the presence of stronger functional equivalence between imagery and perception, non-opioid cognitive control of pain, favorable cardiovascular asset, and greater interoceptive sensitivity in highs. We hypothesize that these characteristics were greatly relevant to our ancestors' survival, and that they may have facilitated the natural selection of individuals who are now named "highs" due to one of their side effects - the proneness to accept suggestions - as part of the reported physiological features. Unfortunately, our theoretical hypothesis cannot be currently experimentally proven. We believe, however, that looking at hypnotizability in a naturalistic, evolutionary perspective may emphasize the importance of its physiological correlates in daily life and in the prediction of the outcome of medical treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00029157.2020.1860893DOI Listing

Publication Analysis

Top Keywords

evolutionary approach
4
approach hypnotizability
4
hypnotizability propose
4
propose evolutionary
4
evolutionary interpretation
4
interpretation presence
4
presence highly
4
highly hypnotizable
4
hypnotizable persons
4
persons highs
4

Similar Publications

Variants of uncertain significance (VUS) represent variants that lack sufficient evidence to be confidently associated with a disease, thus posing a challenge in the interpretation of genetic testing results. Here we report an improved method for predicting the VUS of Arylsulfatase A (ARSA) gene as part of the Critical Assessment of Genome Interpretation challenge (CAGI6). Our method uses a transfer learning approach that leverages a pre-trained protein language model to predict the impact of mutations on the activity of the ARSA enzyme, whose deficiency is known to cause a rare genetic disorder, metachromatic leukodystrophy.

View Article and Find Full Text PDF

Deciphering the biosynthetic pathway of triterpene saponins in Prunella vulgaris.

Plant J

January 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.

The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified.

View Article and Find Full Text PDF

Kinetoplastids are a large and diverse protist group, spanning ecologically important free-living forms to medically important parasites. The taxon Allobodonidae holds an unresolved position within kinetoplastids, and the sole described species, Allobodo chlorophagus, is uncultivated, being a necrotroph/parasite of macroalgae. Here we describe Allobodo yubaba sp.

View Article and Find Full Text PDF

Fencing is one of the most widely utilized tools for reducing human-wildlife conflict in agricultural landscapes. However, the increasing global footprint of fencing exceeds millions of kilometers and has unintended consequences for wildlife, including habitat fragmentation, movement restriction, entanglement, and mortality. Here, we present a novel and quantitative approach to prioritize fence removal within historic migratory pathways of white-bearded wildebeest (Connochaetes taurinus) across Kenya's Greater Masai Mara Ecosystem.

View Article and Find Full Text PDF

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!