Lysine methylation can modify noncovalent interactions by altering lysine's hydrophobicity as well as its electronic structure. Although the ramifications of the former are documented, the effects of the latter remain largely unknown. Understanding the electronic structure is important for determining how biological methylation modulates protein-protein binding, and the impact of artificial methylation experiments in which methylated lysines are used as spectroscopic probes and protein crystallization facilitators. The benchmarked first-principles calculations undertaken here reveal that methyl-induced polarization weakens the electrostatic attraction of amines with protein functional groups - salt bridges, hydrogen bonds and cation-π interactions weaken by as much as 10.3, 7.9 and 3.5 kT, respectively. Multipole analysis shows that weakened electrostatics is due to the altered inductive effects, which overcome increased attraction from methyl-enhanced polarizability and dispersion. Due to their fundamental nature, these effects are expected to be present in many cases. A survey of methylated lysines in protein structures reveals several cases in which methyl-induced polarization is the primary driver of altered noncovalent interactions; in these cases, destabilizations are found to be in the 0.6-4.7 kT range. The clearest case of where methyl-induced polarization plays a dominant role in regulating biological function is that of the PHD1-PHD2 domain, which recognizes lysine-methylated states on histones. These results broaden our understanding of how methylation modulates noncovalent interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830558 | PMC |
http://dx.doi.org/10.1002/chem.202100644 | DOI Listing |
Chemistry
July 2021
Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
Lysine methylation can modify noncovalent interactions by altering lysine's hydrophobicity as well as its electronic structure. Although the ramifications of the former are documented, the effects of the latter remain largely unknown. Understanding the electronic structure is important for determining how biological methylation modulates protein-protein binding, and the impact of artificial methylation experiments in which methylated lysines are used as spectroscopic probes and protein crystallization facilitators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Theory Department, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
The chemical property of methyl groups that renders them indispensable to biomolecules is their hydrophobicity. Quantum mechanical studies undertaken here to understand the effect of point substitutions on potassium (K-) channels illustrate quantitatively how methyl-induced polarization also contributes to biomolecular function. K- channels regulate transmembrane salt concentration gradients by transporting K(+) ions selectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!