Similar Publications

Genetically engineered integrated aflatoxin B and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods.

Biosens Bioelectron

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China. Electronic address:

There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B (AFB) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins.

View Article and Find Full Text PDF

Nanobody-based indirect competitive ELISA for the detection of aflatoxin M1 in dairy products.

Sci Rep

January 2025

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.

Aflatoxin M1 (AFM1) is known to be carcinogenic, mutagenic, and teratogenic and poses a serious threat to food safety and human health, which makes its surveillance critical. In this study, an indirect competitive ELISA (icELISA) based on a nanobody (Nb M4) was developed for the sensitive and rapid detection of AFM1 in dairy products. In our previous work, Nb M4 was screened from a Bactrian-camel-immunized phage-displayed library.

View Article and Find Full Text PDF

Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.

View Article and Find Full Text PDF

Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research. However, established technologies such as chimeric antigen receptors can only detect immobilized antigens, have limited output scope and lack built-in drug control. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen.

View Article and Find Full Text PDF

Human neutrophil elastase (hNE), a serine protease released by neutrophils during inflammation, plays a major role in the pathophysiology of several conditions especially in inflammatory lung diseases. Its inhibition constitutes, therefore, a promising therapeutic strategy to combat these diseases. In this work, we characterized the in vitro properties of a VHH (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!