Prematurity, observed in 15 million births worldwide each year, is a clinical condition that is a major cause of neonatal mortality and morbidity in the short and long term. Preterm infants are at high risk of developing respiratory problems, sepsis, and other morbidities leading to neurodevelopmental impairment and neurobehavioral disorders. Perinatal glucocorticosteroids have been widely used for the prevention and treatment of adverse outcomes linked to prematurity. However, despite their short-term benefits due to their maturational properties, some clinical trials have shown an association between steroids exposure and abnormal brain development in infants born preterm. Neuroinflammation has emerged as a preeminent factor for brain injury in preterm infants, and the major role of microglia, the brain resident immune cells, has been recently highlighted. Considering the role of microglia in the modulation of brain development, the aim of this review is to summarize the effects of endogenous and exogenous glucocorticosteroids on brain development and discuss the possible role of microglia as the mediator of these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185757PMC
http://dx.doi.org/10.2174/1570159X19666210517112913DOI Listing

Publication Analysis

Top Keywords

brain development
16
role microglia
12
preterm infants
8
brain
6
glucocorticosteroids effects
4
effects brain
4
development
4
preterm
4
development preterm
4
preterm infant
4

Similar Publications

Objective: Early education and care (ECEC) is part of the everyday life of most children in developed economies presenting exceptional opportunity to support nutrition and ongoing food preferences. Yet, the degree to which such opportunity is captured in policy-driven assessment and quality ratings of ECEC services is unknown.

Design: Abductive thematic analysis was conducted, guided by key domains of knowledge in nutrition literature and examining identified themes within these domains.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!