Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of octadeceneamine with -unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon . nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near -5 °C (20-30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c02414DOI Listing

Publication Analysis

Top Keywords

gold nanowires
8
technical grade
8
transition temperatures
8
abundance saturated
8
saturated chains
8
olam
5
oleylamine impurities
4
impurities regulate
4
regulate temperature-dependent
4
temperature-dependent hierarchical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!