A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. | LitMetric

Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Published: May 2021

The rapid detachment of liquid droplets from engineered surfaces in the form of complete rebound, pancake bouncing, or trampolining has been extensively studied over the past decade and is of practical importance in many industrial processes such as self-cleaning, anti-icing, energy conversion, and so on. The spontaneous trampolining of droplets needs an additional low-pressure environment and the manifestation of pancake bouncing on superhydrophobic surfaces requires meticulous control of macrotextures and impacting velocity. In this work, we report that the rapid pancake-like levitation of impinging droplets can be achieved on superhydrophilic surfaces through the application of heating. In particular, we discovered explosive pancake bouncing on hot superhydrophilic surfaces made of hierarchically non-interconnected honeycombs, which is in striking contrast to the partial levitation of droplets on the surface consisting of interconnected microposts. This enhanced droplet bouncing phenomenon, characterized by a significant reduction in contact time and increase in the bouncing height, is ascribed to the production and spatial confinement of pressurized vapor in non-interconnected structures. The manifestation of pancake bouncing on the superhydrophilic surface rendered by a bottom-to-up boiling process may find promising applications such as the removal of trapped solid particles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05867DOI Listing

Publication Analysis

Top Keywords

pancake bouncing
20
superhydrophilic surfaces
12
explosive pancake
8
bouncing hot
8
hot superhydrophilic
8
manifestation pancake
8
bouncing
7
surfaces
5
superhydrophilic
4
surfaces rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!