Single-Molecule Magnet (SMM) property is by essence molecular, while commonly measured in solid crystalline state. Solvent crystallization molecules are usually neglected in the analysis and interpretation of solid-state properties. The solvation/desolvation process in the polyoxometalate(POM)-based Na [Er(W O ) ] ⋅ 35 H O SMM demonstrates that the dehydrated form relaxes more than 1000 times faster than the initial state, while the rehydration process allows the quasi complete recovering of the initial magnetic behaviour. This dehydration process is monitored by thermogravimetric analysis (TGA) and temperature-dependent X-ray powder diffraction, and rationalized by periodic quantum chemical calculations evidencing the tremendous role of the labile water molecules in the stability of the edifice. Ab-initio calculations highlight that sodium ions localization in the structure drive the magnetic responses. Isotopic enrichment with nuclear spin free ( Er, I=0) Er ions shows that the relaxation dynamics in the quantum regime depends on the nuclear spin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202100953 | DOI Listing |
Chemphyschem
January 2025
University of Vigo, Dept. of Physical Chemistry, Lagoas-Marcosende, 36310, Vigo, SPAIN.
The aromaticity of a representative sample of pro-aromatic radicals and its nitro, amino, hydroxyl and imine substituted derivatives has been analysed by means of multicentre delocalization indices (MCI) and nuclear-independent chemical shifts (NICS). Because of their radical character, these compounds may exhibit conflicting α/ß aromaticity, so that the contribution of α and β electrons to the MCI and NICS has been analysed separately and their values qualitatively interpreted in terms of the 2n+1/2n rule. All the monocyclic radicals investigated show conflicting α/β aromaticity.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States.
We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.
View Article and Find Full Text PDFMagn Reson Chem
January 2025
Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
Parahydrogen induced polarisation (PHIP) is often used to enhance the sensitivity of NMR, with the purpose of extending the applicability of the technique. Nuclear spin hyperpolarisation obtained via PHIP is generally localised on the protons derived from the addition of para-enriched hydrogen to an unsaturated substrate. This limitation has been previously addressed by pulse schemes that can spread this hyperpolarised magnetisation through the entire network of J-coupled protons in the product molecule.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!