Background: Glutamate-induced neuronal cell death plays a key role in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Some recent studies reported the potential immunomodulatory and neuroprotective properties of inhibitors of serine-threonine kinase, mTOR (mammalian target of rapamycin). However, no study was conducted about the neuroprotective potential of everolimus (EVR), a selective and potent mTOR inhibitor. Therefore, this study was planned to investigate whether EVR has protective effects against glutamate-induced toxicity in PC12 cells, which are used as model for neurons injury, and to elucidate the underlying mechanism.
Methods: PC12 cells were concurrently treated with glutamate (8 mM) and EVR (0-40 nM) for 24 h. Then, the cells viability, apoptosis rate, and apoptosis-related proteins (caspase-3, bax and bcl-2) were measured using MTT, annexin V/PI and immunoblotting assays.
Results: Analyzing the protective effect of different concentrations of EVR (0-40 nM) against glutamate-induced cytotoxicity revealed a significant increase in cell viability in co-treatment regimen ( < 0.01). Also, EVR (40 nM) significantly ( < 0.01) inhibited glutamate-induced apoptosis through depressing the elevation of bax/bcl-2 ratio and expression of cleaved caspase-3, concentration depend.
Conclusion: The results demonstrated, for the first time, that EVR could protect against glutamate-mediated PC12 cell death inhibiting apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2021.1929210 | DOI Listing |
Histol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFMol Neurobiol
January 2025
School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:
Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.
Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.
Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.
Food Chem Toxicol
January 2025
Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China. Electronic address:
Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats.
View Article and Find Full Text PDFTalanta
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:
The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!