Depression is closely related to overactivation of N-methyl-d-aspartic acid (NMDA) receptors, and Zn2+ is a vital NMDA receptor modulator involved in the pathophysiological and physiological processes of depression. Therefore, quantitative and real-time detection of Zn2+ is very important for understanding the pathogenesis of depression. In this work, a near-infrared (NIR) fluorescent probe ISO-DPA was designed and synthesized for Zn2+ detection with a large Stokes shift (185 nm), high quantum yield (up to 44%), high sensitivity (LOD = 0.106 μM) and good pH stability. The probe showed rapid response within 10 s, accompanied by a distinct fluorescence change from faint to bright pink with the fluorescence intensity increasing 4.5-fold. Moreover, the sensing mechanism of ISO-DPA towards Zn2+ was supported by MALDI-TOF-MS and Job's plot. The probe ISO-DPA could detect instantaneous variation of exogenous and endogenous Zn2+ in PC12 cells. The bioimaging results reveal the increase of the endogenous Zn2+ concentration in PC12 cells under the oxidative stress induced by glutamate and confirm that overactivation of NMDA receptors results in an increase of the Zn2+ level. All the results proved that ISO-DPA is an excellent probe for detecting Zn2+ in solution and living cells and could help us better understand Zn2+ associated pathogenesis of depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1an00508a | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy.
Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.
View Article and Find Full Text PDFJIMD Rep
January 2025
The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences Ben Gurion University Beer-Sheva Israel.
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn transporters: the 14-member ZIP/SLC39 family, facilitating Zn influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/ zinc transporter, and suggested association of two homozygous frameshift variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Laboratory of Solid-State Microstructure, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China.
Zinc-ion batteries (ZIBs) have consistently faced challenges related to the instability of the zinc anode. Uncontrolled dendrite growth, hydrogen evolution reaction (HER), and byproduct accumulation on the zinc anode severely affect the cycling life of ZIBs. Herein, inorganic-organic hybrid thin films of titanicones (Ti-based hydroquinone, TiHQ) were fabricated by molecular layer deposition (MLD) technology to modify the zinc metal anode.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!