A new CcpA binding site plays a bidirectional role in carbon catabolism in .

iScience

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.

Published: May 2021

is widely used to produce various valuable products, such as food enzymes, industrial chemicals, and biocides. The carbon catabolite regulation process in the utilization of raw materials is crucial to maximizing the efficiency of this microbial cell factory. The current understanding of the molecular mechanism of this regulation is based on limited motif patterns in protein-DNA recognition, where the typical catabolite-responsive element (CRE) motif is "TGWNANCGNTNWCA". Here, CRE is identified and characterized as a new CRE. It consists of two palindrome arms of 6 nucleotides (AGCTTT/AAAGCT) and an intermediate spacer. CRE is involved in bidirectional regulation in a glucose stress environment. When AGCTTT appears in the 5' end, the regulatory element exhibits a carbon catabolite activation effect, while AAAGCT in the 5' end corresponds to carbon catabolite repression. Further investigation indicated a wide occurrence of CRE in the genome of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091064PMC
http://dx.doi.org/10.1016/j.isci.2021.102400DOI Listing

Publication Analysis

Top Keywords

carbon catabolite
12
cre
5
ccpa binding
4
binding site
4
site plays
4
plays bidirectional
4
bidirectional role
4
carbon
4
role carbon
4
carbon catabolism
4

Similar Publications

Lysine succinylation, and its reversal by sirtuin-5 (SIRT5), is known to modulate mitochondrial fatty acid β-oxidation (FAO). We recently showed that feeding mice dodecanedioic acid, a 12-carbon dicarboxylic acid (DC) that can be chain-shortened four rounds to succinyl-CoA, drives high-level protein hypersuccinylation in the peroxisome, particularly on peroxisomal FAO enzymes. However, the ability of SIRT5 to reverse DC-induced peroxisomal succinylation, or to regulate peroxisomal FAO in this context, remained unexplored.

View Article and Find Full Text PDF

Unlabelled: was engineered to mitigate carbon catabolite repression to efficient co-fermenting mixed sugars, which are primary components of cellulosic biomass. KDH1 produced ethanol with 0.42 ± 0.

View Article and Find Full Text PDF

Lignocellulosic media, containing diverse sugars and growth inhibitor compounds, pose great challenges to fermentation processes. This study tested thermophile Heyndrickxia coagulans strains for the production of L-(+)-lactic acid from waste wood hydrolysate. H.

View Article and Find Full Text PDF

Engineering to metabolize sorbitol as the sole carbon source for synthesis of recombinant L-Asparaginase-II.

Prep Biochem Biotechnol

December 2024

Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India.

Sorbitol, known as D-Glucitol, is a hexose sugar alcohol that occurs naturally in various fruits, including berries, cherries, plums, pears, and apples. It is noteworthy that sorbitol can be metabolized by microbes, plants, and humans through distinct pathways. Nevertheless, in bacteria like (), sorbitol is not the primary carbon source and its utilization is generally suppressed due to carbon catabolite repression.

View Article and Find Full Text PDF

Regulatory dynamics of arginine metabolism in Staphylococcus aureus.

Biochem Soc Trans

December 2024

Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A.

Staphylococcus aureus is a highly significant pathogen with several well studied and defined virulence factors. However, the metabolic pathways that are required to facilitate infection are not well described. Previous data have documented that S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!