We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118695 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.671052 | DOI Listing |
Cancer Lett
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. Electronic address:
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from offer anti-diabetic, antioxidant, anti-tumor, hepatoprotective, and anti-bacterial effects.
View Article and Find Full Text PDFDiscov Med
January 2025
Department of General Surgery, Section for Day Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 610031 Chengdu, Sichuan, China.
Background: Autoimmune hepatitis (AIH) is an autoimmune disease accompanied by an autoimmune inflammatory response that often leads to severe liver damage. In addition, it may further lead to complications such as liver fibrosis, cirrhosis and liver failure. Dihydromyricetin (DHM) possesses various pharmacological properties, such as being anti-inflammatory, antioxidant, and antibacterial.
View Article and Find Full Text PDFImmunohorizons
January 2025
Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
Atopic dermatitis (AD) is characterized by dysregulated T cell immunity and skin microbiome dysbiosis with predominance of Staphylococcus aureus, which is associated with exacerbating AD skin inflammation. Specific glycosylation patterns of S. aureus cell wall structures amplify skin inflammation through interaction with Langerhans cells (LCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!