Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in -Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121023 | PMC |
http://dx.doi.org/10.3389/fphar.2021.651150 | DOI Listing |
Eur Heart J Cardiovasc Imaging
January 2025
Heart Institute, Department of Cardiology. Germans Trias i Pujol University Hospital, Barcelona,Spain.
Aims: To investigate the distribution of left atrioventricular coupling index (LACI) among patients with heart failure and left ventricular ejection fraction (LVEF)<50% and to explore its association with the combined endpoint of all-cause death or HF hospitalization at long term follow-up.
Methods And Results: Patients with HF and LVEF<50% undergoing cardiac magnetic resonance (CMR) were evaluated. Patients with atrial fibrillation or flutter were excluded.
Eur Heart J Cardiovasc Imaging
January 2025
Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
Rationale: Thrombotic microangiopathies (TMA) caused by malignant hypertension is an acute and critical disease among rare diseases. Although renal biopsy pathology is a golden indicator for diagnosing kidney disease, it cannot distinguish between primary and secondary TMA and requires a comprehensive diagnosis in conjunction with other laboratory tests and medical history.
Patient Concerns: A 33-year-old young man was hospitalized due to unexplained kidney failure.
Medicine (Baltimore)
January 2025
The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.
View Article and Find Full Text PDFClin J Am Soc Nephrol
January 2025
Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!