Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116551PMC
http://dx.doi.org/10.3389/fnmol.2021.646072DOI Listing

Publication Analysis

Top Keywords

nervous system
16
gene expression
16
cell
11
cell type
8
diversity nervous
8
cell types
8
cellular diversity
8
neural progenitor
8
expression programs
8
distinct cell
8

Similar Publications

A Neurocysticercosis Case from Timor-Leste, A Previously Unidentified Region of Human Taeniasis Endemicity.

Am J Trop Med Hyg

January 2025

Department of Environmental Biology & Medical Parasitology, Hanyang University College of Medicine, Seoul, Republic of Korea.

Neurocysticercosis, a central nervous system infection caused by the zoonotic parasite Taenia solium, is a leading cause of acquired epilepsy worldwide. It is common in areas with extensive pig farming and pork consumption. This report presents an unusual case of neurocysticercosis in a 28-year-old male from Timor-Leste, a region of nonendemicity for human cases of Taenia solium.

View Article and Find Full Text PDF

Garner, C, Nachtegall, A, Roth, E, Sterenberg, A, Kim, D, Michael, T, and Lee, S. Effects of movement sonification auditory feedback on repetitions and brain activity during the bench press. J Strength Cond Res 38(12): 2022-2028, 2024-Auditory stimulation and feedback have been found to enhance aspects of motor performance such as motor learning, sense of agency, and movement execution.

View Article and Find Full Text PDF

The Topographic Map of the Midfoot: Implication for Improving Safety of Dorsal Approach of Midfoot Surgeries.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Anatomy, School of Medicine, Marmara University, Basibuyuk Yolu, Maltepe, Istanbul, Turkey (Dr. Ismailoglu, Dr. Sehirli, and Dr. Ayingen); the Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Bayramoglu and Dr. Savasan); and the Department of Orthopedic Surgery, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Kocaoglu).

Purpose: The surgical approach for midfoot injuries classically requires dual dorsal incision and identification of the neurovascular structures that are susceptible to injury during the surgery. The aim of this study was to map the topographic anatomy of the dorsum of the foot along with tarsal joints for the dorsal approach of midfoot surgery that would facilitate the surgery and minimize the risk of neurovascular injuries for surgeons who specially focus on foot and ankle injuries.

Methods: The dorsum of the foot was evaluated in 12 feet injected with latex containing a red colorant to visualize the arterial vessels.

View Article and Find Full Text PDF

Design, Synthesis, and Pharmacological Evaluation of Nonsteroidal Tricyclic Ligands as Modulators of GABA Receptors.

J Med Chem

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.

GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.

View Article and Find Full Text PDF

HSV and a tale of two taus.

Sci Signal

January 2025

Science Signaling, AAAS, Washington, DC 20005, USA.

Tau aggregates around HSV-1 in the brain, but is this pathological, part of an immune response, or both?

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!