As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity threat. One common solution to this problem is to identify noneffortful responses and treat them as missing during parameter estimation via the effort-moderated item response theory (EM-IRT) model. Although this model has been shown to outperform traditional IRT models (e.g., two-parameter logistic [2PL]) in parameter estimation under simulated conditions, prior research has failed to examine its performance under violations to the model's assumptions. Therefore, the objective of this simulation study was to examine item and mean ability parameter recovery when violating the assumptions that noneffortful responding occurs randomly (Assumption 1) and is unrelated to the underlying ability of examinees (Assumption 2). Results demonstrated that, across conditions, the EM-IRT model provided robust item parameter estimates to violations of Assumption 1. However, bias values greater than 0.20 were observed for the EM-IRT model when violating Assumption 2; nonetheless, these values were still lower than the 2PL model. In terms of mean ability estimates, model results indicated equal performance between the EM-IRT and 2PL models across conditions. Across both models, mean ability estimates were found to be biased by more than 0.25 when violating Assumption 2. However, our accompanying empirical study suggested that this biasing occurred under extreme conditions that may not be present in some operational settings. Overall, these results suggest that the EM-IRT model provides superior item and equal mean ability parameter estimates in the presence of model violations under realistic conditions when compared with the 2PL model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072948 | PMC |
http://dx.doi.org/10.1177/0013164420949896 | DOI Listing |
Educ Psychol Meas
October 2024
Curriculum Associates, North Billerica, USA.
Rapid-guessing behavior in data can compromise our ability to estimate item and person parameters accurately. Consequently, it is crucial to model data with rapid-guessing patterns in a way that can produce unbiased ability estimates. This study proposes and evaluates three alternative modeling approaches that follow the logic of the effort-moderated item response theory model (EM-IRT) to analyze response data with rapid-guessing responses.
View Article and Find Full Text PDFEduc Psychol Meas
February 2022
University of Minnesota, Twin Cities, Minneapolis, MN, USA.
The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate estimates of measurement properties and examinee ability. In response to this concern, researchers have utilized response times as a proxy of RG and have attempted to improve parameter estimation accuracy by filtering RG responses using popular scoring approaches, such as the effort-moderated item response theory (EM-IRT) model. However, such an approach assumes that RG can be correctly identified based on an indirect proxy of examinee behavior.
View Article and Find Full Text PDFAppl Psychol Meas
September 2021
University of Virginia, Charlottesville, USA.
Suboptimal effort is a major threat to valid score-based inferences. While the effects of such behavior have been frequently examined in the context of mean group comparisons, minimal research has considered its effects on individual score use (e.g.
View Article and Find Full Text PDFEduc Psychol Meas
June 2021
University of Virginia, Charlottesville, VA, USA.
As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity threat. One common solution to this problem is to identify noneffortful responses and treat them as missing during parameter estimation via the effort-moderated item response theory (EM-IRT) model. Although this model has been shown to outperform traditional IRT models (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!