Silver nanoparticles (AgNPs) have become widespread in the environment with increasing industrial applications. But the studies about their potential health risks are far from enough, especially in neurotoxic effects. This study aimed to investigate the neurotoxic effects of longer-term exposure (prolonged exposure for 48 h and chronic exposure for 6 days) of 20nm AgNPs with/without polyvinylpyrrolidone (PVP) coating at low concentrations (0.01-10 mg·L ) to Caenorhabditis elegans. The results suggested that exposure to AgNPs induced damage to nematode survival, with the longest and relative average life span reduced. Exposure to AgNPs caused neurotoxicity on locomotion behaviors (head thrashes, body bends, pharyngeal pumping frequency, and defecation interval) and sensory perception behaviors (chemotaxis assay and thermotaxis assay), as well as impaired dopaminergic, GABAergic, and cholinergic neurons, except for glutamatergic, based on the alters fluorescence intensity, in a dose- and time-dependent manner. Further investigations suggested that the low-dose AgNPs (0.01-0.1 mg·L ) exposure raises receptors of GABAergic and dopamine in C. elegans at the genetic level, whereas opposite results were observed at higher doses (1-10 mg·L ), which implied that AgNPs could cause neurotoxicity by impairing neurotransmitter delivery. The PVP-AgNPs could cause a higher fatality rate and neurotoxicity at the same dose. Notably, AgNPs did not cause any deleterious effect on nematodes at the lowest dose of 0.01 mg·L . In general, these results suggested that AgNPs possess the neurotoxic potential in C. elegans and provided useful information to understand the neurotoxicity of AgNPs, which would offer an inspiring perspective on the safe application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4197DOI Listing

Publication Analysis

Top Keywords

agnps
9
prolonged exposure
8
silver nanoparticles
8
with/without polyvinylpyrrolidone
8
caenorhabditis elegans
8
neurotoxic effects
8
exposure agnps
8
exposure
7
neurobehavior neuron
4
neuron damage
4

Similar Publications

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

Electrospun Chitosan/Polylactic Acid Nanofibers with Silver Nanoparticles: Structure, Antibacterial, and Cytotoxic Properties.

ACS Appl Bio Mater

January 2025

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!