Cellular elasticity is a key factor related to a broad range of physiological and pathological processes. The elasticity of a single cell has thus emerged as a potential biomarker to characterize the cellular state. Both internal and external stimuli affect cellular elasticity, and changes in elasticity can cause alterations in cellular characteristics or function. The application of electric fields (EFs) is a promising method that can be used to change cellular elasticity; however, the mechanisms underlying its effect remain unknown. Here, we demonstrate EFs-induced elasticity changes in human dermal fibroblasts and discuss the underlying mechanism related to actin polymerization. Cellular elasticity increases after EF (50 mV/mm) stimulation, reaching a maximum at 30 min before decreasing between 30 and 120 min. The cellular elasticity under EF stimulation, regardless of stimulation time, is higher than that of the control. F-actin regulates the elasticity of cells through gelsolin activation. We show changes in intracellular Ca caused by EFs, which induced gelsolin activation and F-actin content changes. This result demonstrates a series of processes in which external electrical stimulation conditions regulate cellular elasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30417DOI Listing

Publication Analysis

Top Keywords

cellular elasticity
28
elasticity
11
cellular
9
electric fields
8
regulate cellular
8
elasticity changes
8
gelsolin activation
8
fields regulate
4
elasticity intracellular
4
intracellular concentrations
4

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Objective: Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are common neurodegenerative diseases with distinct but overlapping pathogenic mechanisms. The clinical similarities between these diseases often result in high misdiagnosis rates, leading to serious consequences. Peripheral blood mononuclear cells (PBMCs) are easy to collect and can accurately reflect the immune characteristics of both DLB and AD.

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: In AD, neurofibrillary tangles (NFTs) develop earliest in the limbic system before spreading to neocortical areas. When accounting for covariates of AD pathology, such as age and APOE, there remains interindividual variation in NFT spread in the brain. We therefore used a machine-learning approach to investigate whether age-independent DNA methylation (DNAm) changes in brain associate with histopathological differences in AD.

View Article and Find Full Text PDF

Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!