Age affects the strain-rate dependence of mechanical properties of kelp tissues.

Am J Bot

Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.

Published: May 2021

Premise: The resistance of macroalgae to hydrodynamic forces imposed by ambient water motion depends in part on the mechanical properties of their tissues. In wave-swept habitats, tissues are stretched (strained) at different rates as hydrodynamic forces change. Previous studies of mechanical properties of macroalgal tissues have used either a single strain rate or a small range of strain rates. Therefore, our knowledge of the mechanical properties of macroalgae is limited to a narrow fraction of the strain rates that can occur in nature. In addition, although mechanical properties of macroalgal tissues change with age, the effect of age on the strain-rate dependence of their mechanical behavior has not been documented.

Methods: Using the kelp Egregia menziesii, we measured how high strain rate (simulating wave impingement) and low strain rate (simulating wave surge) affected mechanical properties of frond tissues of various ages.

Results: Stiffness of tissues of all ages increased with strain rate, whereas extensibility was unaffected. Strength and toughness increased with strain rate for young tissue but were unaffected by strain rate for old tissue.

Conclusions: Young tissue is weaker than old tissue and, therefore, the most susceptible to breakage from hydrodynamic forces. The increased strength of young tissue at high strain rates can help the frond resist breaking when pulled rapidly during wave impingement, when hydrodynamic forces are largest. Because breakage of young tissue can remove a frond's meristem and negatively impact the survival of the whole kelp, strain-rate dependence of the young tissue's strength can enhance kelp's survival.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1662DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
strain rate
24
hydrodynamic forces
16
young tissue
16
strain-rate dependence
12
strain rates
12
strain
9
age strain-rate
8
dependence mechanical
8
properties macroalgal
8

Similar Publications

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!