Three ratio spectra manipulating spectrophotometric methods have been developed for determination of Paracetamol (PAR) and Phenylephrine HCl (PHE) in bulk powder and in pharmaceutical formulation. Linear correlations were obtained over the concentration range of 1.0-25.0 µg/mL and 5.0-50.0 µg/mL for PAR and PHE, respectively. The first method is the ratio subtraction method (RS) coupled with constant multiplication (CM) in which PHE was determined by ratio subtraction and PAR was determined by constant multiplication. The second method is the ratio difference method (RD) which depends on measuring the difference between the amplitudes of the ratio spectra at two selected wavelengths. The third method is the first derivative of the ratio spectra (DD), which allows the determination of PAR at 238.8 and 243 nm and PHE at 213.2, 222.2, 271.8 and 286 nm. The proposed methods are simple, accurate and precise (RSD does not exceed 2%). The applicability of the proposed methods was successfully verified by the analysis of PAR and PHE in pharmaceutical formulation without interference of the dosage form additives. Furthermore, the developed methods were validated according to ICH guidelines, so they are considered to be potential competitors for the analysis of the mixture in quality control labs and pharmaceutical factories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.119894 | DOI Listing |
Dalton Trans
January 2025
Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.
Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.
View Article and Find Full Text PDFMagn Reson Med
January 2025
National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.
Purpose: This study aims to improve the detection of glutamate (Glu) concentration and T using an enhanced transverse relaxation encoding with narrowband decoupling (TREND) technique.
Methods: A new editing pulse was designed to simultaneously invert both Glu H3 spins (2.12 ppm and 2.
ACS Omega
January 2025
National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China.
In order to achieve new energetic materials with high energy, low sensitivity, and moisture-proof properties, dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)/ammonium perchlorate (AP) cocrystal (molar ratio 1:1) was successfully prepared through a spray-assisted solvent-nonsolvent method. SEM shows that the morphology of the cocrystal is different from those of the two raw materials. XRD and FT-IR spectra indicate the formation of the cocrystal.
View Article and Find Full Text PDFACS Omega
January 2025
Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh.
The increasing demand for sustainable resources has revived the research on cellulose over the last decades. Therefore, the current research focused on the synthesis of biopolymers for the development of viable tableware utensils from cellulose of coconut coir. The synthesized biopolymer was characterized by using Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile strength, and contact angle.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Inner Mongolia Grassland Station, Huhhot, Inner Mongolia 010020, China. Electronic address:
Owing to the complicated geographical locations and climates, cultivation and selection of forage seeds are challenging. For the first time, we qualitatively distinguished the drought and cold resistance of forage seeds with the time domain and refractive index spectra using terahertz (THz) time-domain spectroscopy. A multilayer structure propagation (MSP) model was developed based on the effective medium and light transport theory to reveal the underlying biological mechanisms of drought and cold resistance of forage seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!