A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles. | LitMetric

A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles.

Colloids Surf B Biointerfaces

School of Chemical Engineering, Sungkyunkwan University, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 16419, Republic of Korea. Electronic address:

Published: September 2021

Alkaline phosphatase (ALP) is an enzyme that catalyzes the dephosphorylation of proteins, nucleic acids, and biomolecules. It is a potential biomarker for diverse diseases such as breast cancer, osteopenia, and hepatobiliary. Herein, we developed a colorimetric sensor for the ALP assay based on its enzymatic activity to dephosphorylate the p-aminophenol phosphate (pAPP) into pAP. In a solution containing silver nanoparticles (AgNPs) and Ag ions prepared using a low concentration of NaBH, pAP mediates the growth of AgNPs by reducing the concentration of Ag ions to enhance the intensity of localized surface plasmon resonance as the pAPP cannot induce a reduction of the remaining Ag due to the masking of the hydroxyl with phosphate. The quantitative assay of the ALP was demonstrated via the colorimetric detection of the pAP-mediated growth of AgNPs in the presence of an ALP. The highly sensitive enzymatic growth of AgNPs provided a wider dynamic linear range of 0.5-225 U/L with a lower limit of detection of 0.24 U/L than that previously reported. The use of pAP resulted in excellent selectivity of the sensor for the ALP assay in human serum, yielding a high recovery rate and a high precision of 99.2 ± 1.5 % for the standard addition method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111835DOI Listing

Publication Analysis

Top Keywords

growth agnps
12
alkaline phosphatase
8
silver nanoparticles
8
sensor alp
8
alp assay
8
alp
5
colorimetric alkaline
4
phosphatase biosensor
4
biosensor based
4
based p-aminophenol-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!