With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2021.05.007DOI Listing

Publication Analysis

Top Keywords

image classification
12
deep learning
8
medical image
8
image normalization
8
contrast enhancement
8
boundary detection
8
detection blocks
8
lung diseases
8
achieved average
8
average accuracy
8

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.

Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.

View Article and Find Full Text PDF

Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.

Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance.

View Article and Find Full Text PDF

Background: With the current shift toward de-escalation of surgical management in low-risk papillary thyroid cancer (PTC), understanding predictors and the clinical significance of additional tumors in the contralateral lobe is important. This study investigated the histopathologic predictors of bilateral disease in low-risk PTC patients and the utility of preoperative ultrasonography in guiding completion thyroidectomy decisions.

Methods: Patients treated with total thyroidectomy (TT) for low-risk PTCs (< 4 cm) at the Endocrine Surgical Unit of the Royal North Shore Hospital, University of Sydney from 2013 to 2020 were identified from a prospectively maintained database.

View Article and Find Full Text PDF

To predict local progression after microwave ablation (MWA) in patients with stage I non-small cell lung cancer (NSCLC), we developed a CT-based radiomics model. Postoperative CT images were used. The intraclass correlation coefficients, two-sample t-test, least absolute shrinkage and selection operator (LASSO) regression, and Pearson correlation analysis were applied to select radiomics features and establish radiomics score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!