Opportunistic bacteria strategically dampen their virulence to allow them to survive and propagate in hosts. However, the molecular mechanisms underlying virulence control are not clearly understood. Here, we found that the opportunistic pathogen Vibrio vulnificus biotype 3, which caused an outbreak of severe wound and intestinal infections associated with farmed tilapia, secretes significantly less virulent multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which is the most critical virulence factor in other clinical Vibrio strains. The biotype 3 MARTX toxin contains a cysteine protease domain (CPD) evolutionarily retaining a unique autocleavage site and a distinct β-flap region. CPD autoproteolytic activity is attenuated following its autocleavage because of the β-flap region. This β-flap blocks the active site, disabling further autoproteolytic processing and release of the modularly structured effector domains within the toxin. Expression of this altered CPD consequently results in attenuated release of effectors by the toxin and significantly reduces the virulence of V. vulnificus biotype 3 in cells and in mice. Bioinformatic analysis revealed that this virulence mechanism is shared in all biotype 3 strains. Thus, these data provide new insights into the mechanisms by which opportunistic bacteria persist in an environmental reservoir, prolonging the potential to cause outbreaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191300 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100777 | DOI Listing |
Biomolecules
November 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, TccC3, and 's own SpvB.
View Article and Find Full Text PDFCureus
October 2024
Department of Internal Medicine, University of South Alabama, Mobile, USA.
is a Gram-negative, curved, rod-shaped organism that can cause sepsis due to either gastroenteritis when ingested (usually via raw oysters) or skin infections when introduced into cuts or abrasions. Found in estuarine waters (coastal waters where fresh water from streams mixes with salt water from the ocean resulting in water of intermediate salinity (i.e.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.
Front Microbiol
August 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
Background: () is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical isolates remain poorly understood in China.
View Article and Find Full Text PDFPLoS One
August 2024
College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and β-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!