Cathepsin H (CTSH) is a type 1 diabetes (T1D) risk gene; large-scale genetic and epidemiological studies found that T1D genetic risk correlates with high CTSH expression, rapid decline of beta-cell function, and early onset T1D. Counterintuitively, transcriptional downregulation of CTSH by proinflammatory cytokines has been shown to promote beta-cell apoptosis. Here, we potentially explain these observed contrasting effects, describing a new mechanism where proinflammatory cytokines and T1D genetic risk variants regulate CTSH transcription via differential DNA methylation. We show that, in human islets, CTSH downregulation by the proinflammatory cytokine cocktail interleukin 1β + tumor necrosis factor α + interferon γ was coupled with DNA hypermethylation in an open chromatin region in CTSH intron 1. A luciferase assay in human embryonic kidney 293 cells revealed that methylation of three key cytosine-phosphate-guanine dinucleotide (CpG) residues in intron 1 was responsible for the reduction of promoter activity. We further found that cytokine-induced intron 1 hypermethylation is caused by lowered Tet1/3 activities, suggesting that attenuated active demethylation lowered CTSH transcription. Importantly, individuals who carry the T1D risk variant showed lower methylation variability at the intron 1 CpG residues, presumably making them less sensitive to cytokines, whereas individuals who carry the protective variant showed higher methylation variability, presumably making them more sensitive to cytokines and implying differential responses to environment between the two patient populations. These findings suggest that genetic and environmental influences on a T1D locus are mediated by differential variability and mean of DNA methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191311PMC
http://dx.doi.org/10.1016/j.jbc.2021.100774DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
genetic environmental
8
type diabetes
8
ctsh
8
differential dna
8
t1d risk
8
t1d genetic
8
genetic risk
8
proinflammatory cytokines
8
ctsh transcription
8

Similar Publications

Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.

Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.

Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!