A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor. | LitMetric

Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor.

Anal Chim Acta

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China. Electronic address:

Published: June 2021

In this study, a clustered carbon aerogel interconnected by carbon balls (CCAI-CB) was prepared as an electrode material to construct a multi-functional electrochemical sensor. CCAI-CB derived from taros (Colocasia esculenta (L). Schott) possesses meso-macroporous structure and plenty of defective sites, and shows notable activity in electrocatalysis as an electrode material. We investigated the application of CCAI-CB modified glassy carbon electrode (CCAI-CB/GCE) for determination of ascorbic acid (AA) and hydrogen peroxide (HO). Compared with carbon nanotubes (CNTs) modified GCE (CNTs/GCE) and bare GCE, CCAI-CB/GCE shows lower detection limit (0.23 μM for AA and 1.31 μM, S/N = 3), higher sensitivities (220.53, 148.86 or 94.39 μA mM cm for AA and 83.06 or 49.07 μA mM cm for HO). Concentrations of AA and HO in real samples were determined at CCAI-CB/GCE with satisfactory detection results obtained. In addition, when the CCAI-CB/GCE was used for electrocatalysis of other biomolecules, it also exhibits high electrochemical activity. Thus, CCAI-CB could be a promising electrode material for the construction of multi-functional electrochemical sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338514DOI Listing

Publication Analysis

Top Keywords

multi-functional electrochemical
12
electrode material
12
clustered carbon
8
carbon aerogel
8
aerogel interconnected
8
interconnected carbon
8
carbon balls
8
construction multi-functional
8
electrochemical sensor
8
carbon
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!