Synergistic combination of polyamide-coated paper-based sorptive phase for the extraction of antibiotics in saliva.

Anal Chim Acta

Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (anexo), E-14071, Córdoba, Spain. Electronic address:

Published: June 2021

AI Article Synopsis

  • The study focuses on creating a new analytical method to simultaneously extract various penicillin-derived antibiotics from human saliva using a modified paper sorptive phase.
  • This paper is coated with nylon, allowing it to interact with the antibiotics of different polarities for effective extraction.
  • The method is efficient and cost-effective, providing accurate detection limits and good recovery rates, making it suitable for bioanalysis applications.

Article Abstract

The development of analytical methods that allow the simultaneous determination of a wide range of analytes with different properties is one of the focuses of attention in Analytical Chemistry. This work describes a proof-of-concept of the synergistic extraction of a planar paper-based sorptive phase modified with a polyamide such as nylon. This as-prepared sorptive phase enables the extraction of six penicillin-derived antibiotics of different polarity from human saliva samples in the same analysis, since the analytes either interact with the paper or with the nylon. The synthesis of the sorptive phase is simple as it only requires dipping the paper into an organic solution of the polymer (i.e., nylon in formic acid). Then, the modified paper-based sorptive phase is introduced in an Eppendorf tube to perform the extraction of the analytes, and subsequent desorption and measurement by liquid chromatography-tandem mass spectrometry. Under the optimized extraction conditions, the method enables the determination of the analytes in saliva samples with limits of detection from 2.4 to 3.7 ng mL. Relative standard deviation (RSD) below 10% for all the target analytes and relative recoveries between 84 and 123% were achieved by using matrix-matched calibration. The results confirm the versatility and the synergistic extraction of the polyamide-coated paper-based sorptive phase, and its potential to be applied in bioanalysis. Moreover, the easy synthesis of the sorptive phase and the low cost of its preparation, as well as the high sample throughput analysis, are some of the main features of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338512DOI Listing

Publication Analysis

Top Keywords

sorptive phase
28
paper-based sorptive
16
polyamide-coated paper-based
8
synergistic extraction
8
saliva samples
8
synthesis sorptive
8
sorptive
7
phase
7
extraction
6
analytes
5

Similar Publications

The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.

View Article and Find Full Text PDF

Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices.

Molecules

November 2024

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.

Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.

View Article and Find Full Text PDF

Fate and transport of perfluorooctane sulfonic acid (PFOS) within heterogenous riparian floodplains.

Sci Total Environ

December 2024

Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA; Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant global concern due to their persistence in the environment and potential health risks. Understanding the fate and transport of PFAS in the environment is quite challenging as characteristics of the sedimentary aquifers, the PFAS itself, and the solution all can influence its behavior. This study examines perfluorooctane sulfonic acid (PFOS) fate and transport in heterogeneous riparian floodplains.

View Article and Find Full Text PDF

The coupling of Solid-Phase Microextraction (SPME) technology with gas chromatography (GC) has a well-established and successful history. Traditionally, SPME fibers have been the most popular form thanks to their versatility and the ease with which they can be fully automated. However, alternative geometries for SPME have been developed over the years, beginning with Stir Bar Sorptive Extraction (SBSE) and later evolving into Thin-Film SPME (TF-SPME) devices.

View Article and Find Full Text PDF

Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction.

Electrophoresis

November 2024

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.

Article Synopsis
  • * Innovative nanoscale materials, like metal-organic frameworks (MOFs) and molecularly imprinted polymers (MIPs), are gaining attention for their enhanced properties compared to traditional bulk materials, leading to better chromatographic analyses between 2020-2024.
  • * The review discusses various extraction methods (e.g., solid-phase extraction and magnetic solid-phase extraction), their advantages and drawbacks, and highlights ongoing challenges and future potential in the field of SPS technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!