The development of analytical methods that allow the simultaneous determination of a wide range of analytes with different properties is one of the focuses of attention in Analytical Chemistry. This work describes a proof-of-concept of the synergistic extraction of a planar paper-based sorptive phase modified with a polyamide such as nylon. This as-prepared sorptive phase enables the extraction of six penicillin-derived antibiotics of different polarity from human saliva samples in the same analysis, since the analytes either interact with the paper or with the nylon. The synthesis of the sorptive phase is simple as it only requires dipping the paper into an organic solution of the polymer (i.e., nylon in formic acid). Then, the modified paper-based sorptive phase is introduced in an Eppendorf tube to perform the extraction of the analytes, and subsequent desorption and measurement by liquid chromatography-tandem mass spectrometry. Under the optimized extraction conditions, the method enables the determination of the analytes in saliva samples with limits of detection from 2.4 to 3.7 ng mL. Relative standard deviation (RSD) below 10% for all the target analytes and relative recoveries between 84 and 123% were achieved by using matrix-matched calibration. The results confirm the versatility and the synergistic extraction of the polyamide-coated paper-based sorptive phase, and its potential to be applied in bioanalysis. Moreover, the easy synthesis of the sorptive phase and the low cost of its preparation, as well as the high sample throughput analysis, are some of the main features of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338512 | DOI Listing |
Talanta
December 2024
College of Chemistry, Liaoning University, Shenyang, 110036, China. Electronic address:
The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.
View Article and Find Full Text PDFMolecules
November 2024
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA; Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant global concern due to their persistence in the environment and potential health risks. Understanding the fate and transport of PFAS in the environment is quite challenging as characteristics of the sedimentary aquifers, the PFAS itself, and the solution all can influence its behavior. This study examines perfluorooctane sulfonic acid (PFOS) fate and transport in heterogeneous riparian floodplains.
View Article and Find Full Text PDFMolecules
October 2024
Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
The coupling of Solid-Phase Microextraction (SPME) technology with gas chromatography (GC) has a well-established and successful history. Traditionally, SPME fibers have been the most popular form thanks to their versatility and the ease with which they can be fully automated. However, alternative geometries for SPME have been developed over the years, beginning with Stir Bar Sorptive Extraction (SBSE) and later evolving into Thin-Film SPME (TF-SPME) devices.
View Article and Find Full Text PDFElectrophoresis
November 2024
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!