Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.

BMC Bioinformatics

Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy.

Published: May 2021

Background: A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells.

Results: In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways.

Conclusions: This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126165PMC
http://dx.doi.org/10.1186/s12859-021-04168-7DOI Listing

Publication Analysis

Top Keywords

synthetic lethal
12
gene pairs
12
group pairs
12
pair genes
8
mutually exclusive
8
exclusive group
8
genes
6
pairs
6
gene
5
identifying collateral
4

Similar Publications

Inhibitory Effect of PRMT5/MTA Inhibitor on MTAP-Deficient Glioma May Be Influenced by Surrounding Normal Cells.

Cancer Med

December 2024

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.

Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.

View Article and Find Full Text PDF

Bacterial clustering biomaterials as anti-infective therapies.

Biomaterials

December 2024

Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore. Electronic address:

In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated.

View Article and Find Full Text PDF

NSC-3852 synergistically enhances the cytotoxicity of olaparib in oral squamous cell carcinoma.

Biochem Biophys Res Commun

December 2024

Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan. Electronic address:

The PARP inhibitor olaparib is an anti-cancer agent based on synthetic lethality that targets poly (ADP-ribose) polymerases. It is used as a therapeutic agent for breast, ovarian, pancreatic, and prostate cancers carrying BRCA1/2 mutations that cause deficiency in homologous recombination. In recent years, acquired resistance to PARP inhibitors has become a clinical problem in PARP inhibitor-treated patients.

View Article and Find Full Text PDF

Synthesis and bioevaluation of a new Ga-labelled niraparib derivative that targets PARP-1 for tumour imaging.

Bioorg Chem

December 2024

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China. Electronic address:

Poly ADP-ribose polymerase (PARP) inhibitors prevent the repair of DNA single-strand breaks in cancer cells with abnormal homologous recombination, producing a synthetic lethal effect. Thus, PARP inhibitors have become clinically effective anticancer drugs. Labelling with radionuclides may extend the use of PARP inhibitors as tracers in nuclear medicine diagnostics, helping to stratify patients.

View Article and Find Full Text PDF

Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!