Motor performance is classically described as improving nonlinearly with practice, demonstrating rapid improvements early in practice with stabilization later, which is commonly modeled by exponential decay functions. However, retrospective analyses of our previously collected data challenge this theoretical model of motor skill acquisition, suggesting that a majority of individual learners actually demonstrate patterns of motor improvement different from this classical model. A convenience sample of young adults, older adults, and people with Parkinson disease trained on the same functional upper-extremity task. When fitting three-parameter exponential decay functions to individual participant data, the authors found that only 13.3% of young adults, 40.9% of older adults, and 66.7% of adults with Parkinson disease demonstrated this "classical" skill acquisition pattern. Thus, the three-parameter exponential decay pattern may not well-represent individuals' skill acquisition of complex motor tasks; instead, more individualized analysis methods may be warranted for advancing a theoretical understanding of motor skill acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686050PMC
http://dx.doi.org/10.1123/mc.2020-0043DOI Listing

Publication Analysis

Top Keywords

exponential decay
16
skill acquisition
16
motor skill
12
decay pattern
8
decay functions
8
young adults
8
older adults
8
parkinson disease
8
three-parameter exponential
8
motor
6

Similar Publications

Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).

Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.

View Article and Find Full Text PDF

Random walks with long-range memory on networks.

Chaos

January 2025

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

We study an exactly solvable random walk model with long-range memory on arbitrary networks. The walker performs unbiased random steps to nearest-neighbor nodes and intermittently resets to previously visited nodes in a preferential way such that the most visited nodes have proportionally a higher probability to be chosen for revisit. The occupation probability can be expressed as a sum over the eigenmodes of the standard random walk matrix of the network, where the amplitudes slowly decay as power-laws at large times, instead of exponentially.

View Article and Find Full Text PDF

Data Analysis Methods in Time-Resolved Fluorescence Spectroscopy: A Tutorial Review.

Chemistry

January 2025

Division of Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

Fluorescence spectroscopy and related techniques benefit from exceptional sensitivity and have become engrained in a variety of fields from biosciences to materials sciences. Measuring time-domain fluorescence decays is nowadays a routine task in many laboratories across these different fields. Perhaps surprisingly, a correct data analysis of these fluorescence decay curves presents a formidable challenge and requires extensive insight in the problems associated with fitting this type of data.

View Article and Find Full Text PDF

This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.

View Article and Find Full Text PDF

Testing the Isotropic Cauchy Hypothesis.

Entropy (Basel)

December 2024

Department of Electrical and Computer Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon.

The isotropic Cauchy distribution is a member of the central α-stable family that plays a role in the set of heavy-tailed distributions similar to that of the Gaussian density among finite second-moment laws. Given a sequence of observations, we are interested in characterizing the performance of Likelihood Ratio Tests, where two hypotheses are plausible for the observed quantities: either isotropic Cauchy or isotropic Gaussian. Under various setups, we show that the probability of error of such detectors is not always exponentially decaying with , with the leading term in the exponent shown to be logarithmic instead, and we determine the constants in that leading term.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!