Social network dynamics predict hormone levels and behavior in a highly social cichlid fish.

Horm Behav

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Institue for Cellular & Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Published: June 2021

Group living confers many benefits while simultaneously exposing group members to intense competition. An individual's rise to prominence within a group may conflict with the overall functioning of the group. There is therefore a complex and dynamic relationship between the behavioral displays that directly benefit an individual, the consequences of these actions for the community, and how they feed back on individual-level fitness. We used a network analysis approach to study the link between behavior, social stability, and steroid hormone levels in replicate communities of the cichlid fish, Astatotilapia burtoni, which live in social groups with a dominance hierarchy. We demonstrate that individual behavior can have direct and indirect effects on the behavior of others while also affecting group characteristics. Our results show that A. burtoni males form stable social networks, where dominant individuals act as hubs for social interactions. However, there was variation in the temporal stability in these networks, and this variation in stability impacted hormone levels. Dominant males had higher testosterone levels, however, the differences in testosterone levels between dominant and subordinate males were greatest in stable communities. In sum, our analyses provide novel insights into the processes by which individual and community properties interact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2021.104994DOI Listing

Publication Analysis

Top Keywords

hormone levels
12
cichlid fish
8
levels dominant
8
testosterone levels
8
social
6
levels
5
group
5
social network
4
network dynamics
4
dynamics predict
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!