Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes serious economic losses in the pig industry. Phosphorylation is an important mechanism of protein modification. Recent studies have reported that the serine/threonine kinase (STK) gene contributes to the growth and virulence of SS2. However, the mechanism underlying the regulatory functions of STK in SS2 has not been thoroughly elucidated to date. In this study, phosphoproteomic analysis was performed to determine substrates of the STK protein. Twenty-two proteins with different cell functions were identified as potential substrates of STK. Phosphoglucosamine mutase (GlmM) was selected for further investigation among them. In vitro phosphorylation assay and immunoprecipitation assay indicated that GlmM was phosphorylated by STK at the Ser-101 site and the phosphorylation level of GlmM can be affected. We observed that compared to the wild-type strain ZY05719, the glmM-deficient strain (ΔglmM) and the glmM S101A point mutation strain (CΔglmM S101A) showed aberrant cell morphology and attenuated virulence, including enlarged cell volume, absent capsule, decreased resistance, lower survival caused by unusual peptidoglycan synthesis, and significantly attenuated pathogenicity in a mouse infection model. Additionally, compared to ZY05719 and CΔglmM, GlmM enzyme acivities and peptidoglycan concentrations of the stk-deficient strain (Δstk), CΔglmM S101A decreased significantly. These experiments revealed that STK phosphorylates GlmM at the Ser-101 site to impact GlmM enzyme activity and control cell wall peptidoglycan synthesis to affect SS2 pathogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2021.109102 | DOI Listing |
Comput Struct Biotechnol J
November 2022
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative.
View Article and Find Full Text PDFJ Bacteriol
October 2022
Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaidegrid.1010.0, Adelaide, South Australia, Australia.
IUBMB Life
December 2022
School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2021
Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is an acetylated amino sugar nucleotide that naturally serves as precursor in bacterial cell wall synthesis and is involved in prokaryotic and eukaryotic glycosylation reactions. UDP-GlcNAc finds application in various fields including the production of oligosaccharides and glycoproteins with therapeutic benefits. At present, nucleotide sugars are produced either chemically or by enzyme cascades.
View Article and Find Full Text PDFVet Microbiol
July 2021
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes serious economic losses in the pig industry. Phosphorylation is an important mechanism of protein modification. Recent studies have reported that the serine/threonine kinase (STK) gene contributes to the growth and virulence of SS2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!