Associations of dietary markers with brain volume and connectivity: A systematic review of MRI studies.

Ageing Res Rev

Department of Psychiatry, University of Oxford, OX3 7JX, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX37JX, UK.

Published: September 2021

The high prevalence of unhealthy dietary patterns and related brain disorders, such as dementia, emphasizes the importance of research that examines the effect of dietary factors on brain health. Identifying markers of brain health, such as volume and connectivity, that relate to diet is an important first step towards understanding the lifestyle determinants of healthy brain ageing. We conducted a systematic review of 52 studies (total n = 21,221 healthy participants aged 26-80 years, 55 % female) that assessed with a range of MRI measurements, which brain areas, connections, and cerebrovascular factors were associated with dietary markers. We report associations between regional brain measures and dietary health. Collectively, lower diet quality was related to reduced brain volume and connectivity, especially in white and grey matter of the frontal, temporal and parietal lobe, cingulate, entorhinal cortex and the hippocampus. Associations were also observed in connecting fibre pathways and in particular the default-mode, sensorimotor and attention networks. However, there were also some inconsistencies in research methods and findings. We recommend that future research use more comprehensive and consistent dietary measures, more representative samples, and examine the role of key subcortical regions previously highlighted in relevant animal work.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2021.101360DOI Listing

Publication Analysis

Top Keywords

volume connectivity
12
dietary markers
8
brain
8
markers brain
8
brain volume
8
systematic review
8
brain health
8
dietary
5
associations dietary
4
connectivity systematic
4

Similar Publications

Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.

Nanomaterials (Basel)

January 2025

Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.

This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.

View Article and Find Full Text PDF

The plane running between two adjacent pulmonary segments consists of a very thin layer of connective tissue through which the pulmonary vein also runs. To perform an anatomically correct segmentectomy, this segmental plane needs to be divided. Before the operation, the locations of vessels and bronchi are confirmed by three-dimensional computed tomography.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Background And Purpose: Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.

Methods: This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450).

View Article and Find Full Text PDF

The human cerebral cortex is known for its hemispheric specialization, which underpins a variety of functions and activities. However, it is not well understood if similar lateralization exists within the deep gray matter nuclei, such as the basal ganglia (BG) and thalamus, and their associated arteries, including the lenticulostriate arteries (LSAs). To explore this, we analyzed images from 7T MRI scans of 40 healthy young individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!