Fast approximate inference for multivariate longitudinal data.

Biostatistics

School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, AUSTRALIA.

Published: December 2022

Collecting information on multiple longitudinal outcomes is increasingly common in many clinical settings. In many cases, it is desirable to model these outcomes jointly. However, in large data sets, with many outcomes, computational burden often prevents the simultaneous modeling of multiple outcomes within a single model. We develop a mean field variational Bayes algorithm, to jointly model multiple Gaussian, Poisson, or binary longitudinal markers within a multivariate generalized linear mixed model. Through simulation studies and clinical applications (in the fields of sight threatening diabetic retinopathy and primary biliary cirrhosis), we demonstrate substantial computational savings of our approximate approach when compared to a standard Markov Chain Monte Carlo, while maintaining good levels of accuracy of model parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748580PMC
http://dx.doi.org/10.1093/biostatistics/kxab021DOI Listing

Publication Analysis

Top Keywords

model
5
fast approximate
4
approximate inference
4
inference multivariate
4
multivariate longitudinal
4
longitudinal data
4
data collecting
4
collecting multiple
4
multiple longitudinal
4
outcomes
4

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!