Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202100164RDOI Listing

Publication Analysis

Top Keywords

squalene synthase
20
cholesterol-dependent cytolysins
12
cells cholesterol-dependent
8
bisphosphonate molecules
8
reduced pyolysin-induced
8
squalene
5
synthase
5
cells
5
bisphosphonate
4
bisphosphonate inhibitors
4

Similar Publications

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore the effects of targeting the mevalonate pathway (MVP) in rhabdomyosarcoma (RMS), a common soft tissue tumor in young individuals.
  • In silico analyses showed that higher levels of MVP-related genes correlated with poorer patient survival, while in vitro tests revealed that MVP inhibitors significantly reduced RMS cell growth, migration, and survival.
  • In vivo experiments demonstrated the effectiveness of MVP inhibition in RMS xenografts, highlighting the potential of these inhibitors as a therapeutic strategy against RMS.
View Article and Find Full Text PDF

Discovery and Functional Identification of 2,3-Oxidosqualene Cyclases and Cytochrome P450s in Triterpenoid Metabolic Pathways of .

J Agric Food Chem

December 2024

Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.

Article Synopsis
  • * The study identified key enzyme genes involved in the triterpenoid metabolic pathways using transcriptome sequencing and synthetic biology, particularly focusing on two 2,3-oxidosqualene cyclases and two cytochrome P450s.
  • * Researchers successfully reconstructed the biosynthetic pathway for ursane and oleanane-type triterpenoids in a yeast host, detailing the enzymatic reactions necessary for producing important compounds like ursolic acid and oleanolic acid.
View Article and Find Full Text PDF

Squalene synthase (SQS) plays a crucial role in the cholesterol biosynthetic pathway. Its distinctive strategic position makes it a promising candidate for targeting and developing new anti-hypercholesterolemic agents. To uncover novel phytochemical scaffolds as potential inhibitors of SQS, we employed a structure-based virtual screening approach that involves screening 545 phytochemicals collected from Moroccan aromatic and medicinal plants and filtering them based on RMSD values and their affinity towards the target enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!