Background: Multiple-breath inert gas washout (MBW) is a sensitive technique to assess lung volumes and ventilation inhomogeneity in infancy. Poor agreement amongst commercially available setups and a lack of transparency in the underlying algorithms for the computation of infant MBW outcomes currently limit the widespread application of MBW as a surveillance tool in early lung disease.
Methods: We determined all computational steps in signal processing and the calculation of MBW outcomes in the current infant WBreath/Exhalyzer D setup (Exhalyzer D device, Eco Medics AG; WBreath software version 3.28.0, ndd Medizintechnik AG; Switzerland). We developed a revised WBreath version based on current consensus guidelines and compared outcomes between the current (3.28.0) and revised (3.52.3) WBreath version. We analyzed 60 visits from 40 infants with cystic fibrosis (CF) and 20 healthy controls at 6 weeks and 1 year of age.
Results: Investigation into the algorithms in WBreath 3.28.0 revealed discrepancies from current consensus guidelines, which resulted in a potential overestimation of functional residual capacity (FRC) and underestimation of lung clearance index (LCI). We developed a revised WBreath version (3.52.3), which overall resulted in 6.7% lower FRC (mean (SD) -1.78 (0.99) mL/kg) and 14.1% higher LCI (1.11 (0.57) TO) than WBreath version 3.28.0.
Conclusion: Comprehensive investigation into the signal processing and algorithms used for analysis of MBW measurements improves the transparency and robustness of infant MBW data. The revised software version calculates outcomes according to consensus guidelines. Future work is needed to validate and compare outcomes between infant MBW setups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ppul.25464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!