In the past decades, the silicone layer thickness and its distribution on the inner glass barrels of prefilled syringes have been characterized in several studies. However, the limited number of adequate methods to characterize thin baked-on silicone layers and the destructive nature of some analytical techniques suggest challenges to the inter-lab reproducibility of some methods. In this study, the measured silicone layer thickness of baked-on siliconized syringes was compared between two laboratories, both equipped with white light reflectometry coupled to laser interferometry instrumentation (Bouncer, LE UT 1.0, LE UT 2.0). The quantity of silicone oil of a subset of those syringes was measured by Fourier transform infrared spectroscopy. Glide force tests were realized as complementary measurements on both syringes analyzed by white light reflectometry coupled to laser interferometry instrumentation and on non-analyzed identical syringes from the same lot. Silicone profiles of all prefilled syringes including the limit of detection results replaced with 20 nm were comparable, but values were slightly lower when measured with the Bouncer instrument. An increase of the layer thickness from the finger flange to the needle side was found for all syringes with all instruments (20 nm to 130-140 nm). Glide force results were similar except for a difference in peak width in the break loose region between the laboratories. The mean quantities of silicone oil found by both laboratories were similar (64 µg/syringe and 69 µg/syringe). Overall, comparable results between laboratories suggest a good reproducibility of the thickness measurement method as a result of thorough method understanding and defining key method parameters. Hence this study presents a robust inter-lab comparison between silicone layer thickness measurements that has been a lack in the literature up to now.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5731/pdajpst.2020.012567 | DOI Listing |
Sci Rep
January 2025
Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China. Electronic address:
Polymer material (PM) is a novel vertical barrier material, demonstrated to be effective in impeding pollutants. However, the associated transport research is limited. This study aims to develop an analytical solution for two-dimensional transport of organic contaminant in the PM-enhanced composite cutoff wall (CCW) system, where the variable substitution and Fourier transform methods are used.
View Article and Find Full Text PDFTalanta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:
The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!