Lu-PSMA radioligand therapy is a promising new option for patients with metastasized castration-resistant prostate cancer, and the spectrum of adverse events with this treatment has to be evaluated. Here, we describe the case of a patient with M1c disease (metastasis to the mediastinum, lungs, bones, and liver) who presented with elevated liver enzyme levels after receiving Lu-PSMA radioligand therapy for castration-resistant prostate cancer. Pretreatment Ga-PSMA PET/CT showed at least 4 liver lesions with low uptake. Overall, the liver uptake was inhomogeneous. Liver biopsy was performed subsequently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.120.258533 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
Purpose: This retrospective analysis evaluates baseline F-flotufolastat positron emission tomography (PET) parameters as prognostic parameters for treatment response and outcome in patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing treatment with [Lu]Lu-PSMA-I&T.
Methods: A total of 188 mCRPC patients with baseline F-flotufolastat PET scans were included. Tumor lesions were semiautomatically delineated, with imaging parameters including volume-based and standardized uptake value (SUV)-based metrics.
Rofo
January 2025
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Theranostics in nuclear oncology combines diagnostic and therapeutic procedures using radiotracers to target tumor cells. Prostate-specific membrane antigen (PSMA) is a key target in metastatic prostate cancer, and the radioligand [177Lu]Lu-PSMA-617, which binds to PSMA, has shown promising results in treating metastatic castration-resistant prostate cancer (mCRPC), leading to its approval by the European Medicines Agency in 2022.In this narrative review, the current evidence of [177Lu]Lu-PSMA-617 in mCRPC was discussed in the context of selected studies and the joint EANM/SNMMI guidelines for Lutetium-177-labeled PSMA-targeted radioligand therapy.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
Purpose: To report real-world clinical experience with [Lu]Lu-PSMA-I&T targeted radionuclide therapy (TRT) in patients with metastatic castration-resistant prostate cancer (mCRPC) in a single tertiary referral university hospital.
Methods: Patients with mCRPC who were treated with [Lu]Lu-PSMA-I&T TRT as standard of care between February 2022 and August 2023 were included in this retrospective study. Patients were treated with a maximum of six cycles with a fixed activity of 7.
Eur J Nucl Med Mol Imaging
January 2025
Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt, Germany.
Purpose: Lutetium-177 Prostate-specific membrane antigen (Lu-PSMA) radioligand therapy is EMA-approved for metastatic castration resistant prostate cancer (mCRPC) after androgen receptor pathway inhibition (ARPI) and taxan-based chemotherapy. However, its effect in taxan-naïve patients is under current investigation.
Methods: We relied on the FRAMCAP database to elaborate Lu-PSMA therapy outcomes of progression-free (PFS) and overall (OS) in taxan-naïve mCRPC patients after previous ARPI treatment.
Cancers (Basel)
December 2024
Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
Over the past decade, prostate-specific membrane antigen positron emission tomography (PSMA-PET) has revolutionized prostate cancer (PCa) imaging, offering greater sensitivity and specificity compared to conventional imaging modalities such as CT, MRI, and bone scintigraphy. PSMA-PET is particularly valuable in staging newly diagnosed patients with intermediate- and high-risk disease, detecting biochemical recurrence, and evaluating metastatic cases. By utilizing radiotracers that accumulate specifically in PSMA-expressing cells, even small metastases can be detected, offering a detailed assessment of cancer extent and enabling more targeted diagnostic evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!