Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide alachlor.

Environ Pollut

Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal. Electronic address:

Published: October 2021

Several environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms. The objective of this study was to use alachlor, a chloroacetanilide herbicide responsible for chronic toxicity, to understand its impact in target and non-target organisms and at different levels of biological organization by using several model organisms, including membranes of dipalmitoylphosphatidylcholine (DPPC), rat liver mitochondria, bacterial (Bacillus stearothermophilus), plant (Lemna gibba) and mammalian cell lines (HeLa and neuro2a). Our results demonstrated that alachlor strongly interacted with membranes of DPPC and interfered with mitochondrial bioenergetics by reducing the respiratory control ratio and the transmembrane potential. Moreover, alachlor also decreased the growth of B. stearothermophilus and its respiratory activity, as well as decreased the viability of both mammalian cell lines. The values of TC increased in the following order: Lemna gibba < neuro2a < HeLa cells < Bacillus stearothermophilus. Together, the results suggest that biological membranes constitute a putative target for the toxic action of this lipophilic herbicide and point out the risks of its dissemination on environment, compromising ecosystem equilibrium and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117239DOI Listing

Publication Analysis

Top Keywords

environmental risk
8
environmental pollutants
8
model organisms
8
target non-target
8
non-target organisms
8
mammalian cell
8
cell lines
8
organisms
5
improving pollutants
4
environmental
4

Similar Publications

, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.

View Article and Find Full Text PDF

Parasitic survey of birds of prey used for falconry in Poland.

Pol J Vet Sci

December 2024

University of Warmia and Mazury in Olsztyn, Faculty of Veterinary Medicine, Department of Parasitology and Invasive Diseases, Oczapowskiego 13, 10-718 Olsztyn, Poland.

Birds of prey raised in captivity have direct contact with the environment and are fed raw meat various animals, which increases the risk of infections caused by parasites, including endoparasites. The aim of this study was to evaluate the prevalence of endoparasites in predatory birds of the orders Accipitriformes and Falconiformes that are used in falconry in Poland. Fresh feces were sampled from 52 birds, including 16 saker falcons (Falco cherrug), 8 lanner falcons (Falco biarmicus), 7 peregrine falcons (Falco peregrinus), 8 Harris's hawks (Parabuteo unicinctus), 7 Eurasian goshawks (Accipiter gentilis), 3 common kestrels (Falco tinnunculus), 1 Eurasian sparrowhawk (Accipiter nisus), 1 red-tailed hawk (Buteo jamaicensis), and 1 common buzzard (Buteo buteo).

View Article and Find Full Text PDF

GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).

Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .

View Article and Find Full Text PDF

The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype.

Front Biosci (Landmark Ed)

December 2024

Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.

Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.

View Article and Find Full Text PDF

Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.

Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!