Advanced nuclear reactor designs and advanced fuel types offer safety features that may reduce environmental consequences in an accident scenario when compared to conventional reactors and fuels. One advanced reactor fuel is tri-structural isotropic (TRISO) fuel particles which are approximately 0.9 mm in diameter. TRISO particle mobility, assuming the particle is unruptured and the encapsulated radionuclides are contained, was explored by a theoretical examination of transport through atmosphere, soil and groundwater, surface water, and non-human biota pathways. TRISO particles are too large and dense to travel in the atmosphere except under extreme conditions. TRISO particles are also too large to penetrate most soil profiles and so cannot be transported to or by groundwater. TRISO particles will settle out of the water column in surface waters and thus the transport will depend on the energy of the water body (e.g., waves or floods). TRISO particles could be transported by non-human biota. The size of TRISO particles could allow them to be intentionally ingested by non-human biota as a gastrolith or mimic something typical in an organism's diet. Generally, TRISO particles will have reduced environmental mobility compared to releases of radionuclides in the event of a conventional nuclear reactor accident. The extent of transport has implications in emergency planning zone designations and other considerations for licensing and deploying TRISO-fueled reactors. Further research and experimental work exploring TRISO particle mobility is required to understand the full environmental mobility of TRISO particles in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2021.106630 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!