Antimicrobial core-shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing.

Int J Pharm

Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran. Electronic address:

Published: June 2021

Treatment of skin injuries is still facing major challenges, such as chronicity and infections, particularly those caused by multi-drug resistance pathogens. An effective treatment of such wounds should accelerate the wound healing process while preventing bacterial contamination. Here, a novel core-shell nanofiber mat was fabricated comprising gelatin/polyvinyl alcohol (as a core) and aloe vera/arabinose/polyvinylpyrrolidone (as a shell) for accelerating the healing process of bacteria-infected wounds. Trachyspermum Ammi (Ajwain) essential oil (EO), as a potent and natural antimicrobial agent against microorganisms, was incorporated into the core of nanofiber mats using coaxial electrospinning. The microscopy images demonstrated the successful fabrication of the core-shell structure with a uniform fiber size of 564 ± 106.35 nm. Moreover, Ajwain EO-loaded nanofiber mat (core-shell/EO) provided excellent antimicrobial activity and antioxidant ability. The in vitro and ex vivo release of Ajwain EO from the fabricated nanofiber mat corroborated a prolonged release profile. Furthermore, in vivo antibacterial activity, wound closure, and histomorphological examinations showed the high efficacy of the core-shell/EO mat in the treatment of Staphylococcus aureus-infected full-thickness rat wounds compared to standard control treatment with a gauze. Overall, these results represent the core-shell/EO mat's potential as a newly developed wound dressing for bacteria-infected full-thickness skin injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120698DOI Listing

Publication Analysis

Top Keywords

nanofiber mat
12
ajwain essential
8
essential oil
8
wound healing
8
skin injuries
8
healing process
8
antimicrobial core-shell
4
core-shell electrospun
4
electrospun nanofibers
4
ajwain
4

Similar Publications

The antibacterial nanofibrous mat is crucial in biomedicine as it enhances infection control, expedites wound healing, and mitigates health hazards by decreasing antibiotic usage. A novel synergistic antibacterial and hydrophilic nanofibrous mat successfully fabricated by solution electrospinning from polyvinyl alcohol (PVA) incorporated Croton bonplandianum Baill (CBB) leaves extract. Antioxidant-enriched leaf extract of the CBB plant was integrated with PVA in varying proportions of 30% (CBB-30), 40% (CBB-40), and 50% (CBB-50) to manufacture antibacterial nanofibrous mat.

View Article and Find Full Text PDF

The solid-phase adsorption principles and fundamental mechanism of isobutyric acid, 1-octen-3-ol, and octanal (three key off-odor compounds of oyster peptides) were explored using electrospun octenyl succinylated starch-pullulan (OSS-PUL) nanofiber mat. The nanofiber mats had selective adsorption behaviors as indicated by the selective adsorption rates of isobutyric acid, 1-octen-3-ol, and octanal, which were 94.96%, 85.

View Article and Find Full Text PDF

Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) are devices that convert mechanical energy into electrical energy through the triboelectric effect, supplying power to a wide array of advanced sensing and monitoring systems. In this work, we utilized graphene-filled nanofibrous poly(vinylidene difluoride--hexafluoropropylene) (PVDF-HFP) as TENGs, employing electrospinning technology. We examined how the dielectric characteristics and transferred charge of the electrification mat affect the output of TENGs.

View Article and Find Full Text PDF

Preparation and characterization of mangiferin-loaded polylactic acid nanofiber mat with antioxidant and anti-browning properties for the development of food packaging products.

Int J Biol Macromol

December 2024

CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India; Institute of Health Sciences, Presidency University, Plot No. DG/02/02, Action Area 1D, Newtown, Kolkata, 700156, West Bengal, India. Electronic address:

In this study, antioxidant nanofiber-based food packaging material composed of polylactic acid (PLA) and mangiferin (MG) was produced to reduce food spoilage. To this end, MG was extracted from Mangifera indica and chemically characterized. In vitro assays for scavenging several radical ions showed excellent antioxidant properties of MG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!