Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose HyFRIS-Net to jointly estimate the hybrid reflectance and illumination models, as well as the refined face shape from a single unconstrained face image in a pre-defined texture space. The proposed hybrid reflectance and illumination representation ensure photometric face appearance modeling in both parametric and non-parametric spaces for efficient learning. While forcing the reflectance consistency constraint for the same person and face identity constraint for different persons, our approach recovers an occlusion-free face albedo with disambiguated color from the illumination color. Our network is trained in a self-evolving manner to achieve general applicability on real-world data. We conduct comprehensive qualitative and quantitative evaluations with state-of-the-art methods to demonstrate the advantages of HyFRIS-Net in modeling photo-realistic face albedo, illumination, and shape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2021.3080586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!